1,983 research outputs found
Geographic determinants of Australian foreign direct investments
The volume of investment that has flowed from Australia into the outside world, and its implications for economic policy, has attracted substantial policy debate among Australian policy makers, particularly in the context of
regionalisation of the world economy. Using hypotheses from investment demand model and new trade theory we investigate if market size, its growth rate, openness, regional economic integration, language and cultural similarity
and the availability of knowledge capital have any impact in attracting Australian investments offshore. Our results suggest that countries which are open, have a large domestic market and stable macro-economic environment
tend to attract most Australian FDI. Regional integration, and the similarity in language and culture do not have any effect in attracting FDI from Australia. This result has a significant policy implications not only for Australia, but
also for other countries who are increasingly engaged in forming trading blocs like Australia-US free trade agreements (AUSFTA)
Context modeling and constraints binding in web service business processes
Context awareness is a principle used in pervasive services
applications to enhance their exibility and adaptability to
changing conditions and dynamic environments. Ontologies
provide a suitable framework for context modeling and reasoning. We develop a context model for executable business processes { captured as an ontology for the web services domain. A web service description is attached to a service context profile, which is bound to the context ontology. Context instances can be generated dynamically at services runtime and are bound to context constraint services. Constraint services facilitate both setting up constraint properties and constraint checkers, which determine the dynamic validity of context instances. Data collectors focus on capturing context instances. Runtime integration of both constraint services and data collectors permit the business process to achieve dynamic business goals
Context constraint integration and validation in dynamic web service compositions
System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web
services implemented in WS-BPEL. A notion of context { covering physical and contractual
faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework
Ontology-based composition and matching for dynamic cloud service coordination
Recent cross-organisational software service offerings, such as cloud computing, create higher integration needs.
In particular, services are combined through brokers and mediators, solutions to allow individual services to collaborate and their interaction to be coordinated are required. The need to address dynamic management - caused by cloud and on-demand environments - can be addressed through service coordination based on ontology-based composition and matching techniques. Our solution to composition and matching utilises a service coordination space that acts as a passive infrastructure for collaboration where users submit requests that are then selected and taken on by providers. We discuss the information models and the coordination principles of such a collaboration environment in terms of an ontology and its underlying description logics. We provide ontology-based solutions for structural composition of descriptions and matching between requested and provided services
Constraint integration and violation handling for BPEL processes
Autonomic, i.e. dynamic and fault-tolerant Web service composition is a requirement resulting from recent developments such as on-demand services. In the context of planning-based service composition, multi-agent planning and dynamic error handling are still unresolved problems. Recently, business rule and constraint management has been looked at for enterprise SOA to add business flexibility. This paper proposes a constraint integration and violation handling technique for dynamic service composition. Higher degrees of reliability and fault-tolerance, but also performance for autonomously composed WS-BPEL processes are the objectives
Dynamic integration of context model constraints in web service processes
Autonomic Web service composition has been a challenging topic for some years. The context in which composition takes places determines essential aspects. A context model can provide meaningful composition information for services process composition. An ontology-based approach for context information integration is the basis of a constraint approach to dynamically integrate context validation into service processes. The dynamic integration of context constraints into an orchestrated service process is a necessary direction to achieve autonomic service composition
Distributed aspect-oriented service composition for business compliance governance with public service processes
Service-Oriented Architecture (SOA) offers a technical foundation for Enterprise Application Integration and
business collaboration through service-based business components. With increasing process outsourcing and cloud computing, enterprises need process-level integration and collaboration (process-oriented) to quickly launch new business processes for new customers and products. However, business processes that cross organisations’ compliance regulation boundaries are still unaddressed. We introduce a distributed aspect-oriented service composition approach, which enables multiple process clients hot-plugging their business compliance models (business rules, fault handling policy, and execution monitor) to BPEL business processes
Recommended from our members
Rectangular reinforced concrete beams strengthened with CFRP straps
Shear deficient reinforced concrete (RC) structures can be effectively strengthened using external prestressed carbon fibre reinforced polymer (CFRP) straps. Due to the presence of the external elastic straps, a strengthened beam can continue to carry significant load beyond the stages of crack plane slipping and internal shear stirrup yielding, and the concrete is subjected to high tensile strain levels. As a consequence, the concrete material models play a significant role in the context of modeling such behavior. The modified compression field theory (MCFT), which is a widely accepted shear theory for unstrengthened RC structures, incorporates the details of the stress-strain behavior of concrete. The MCFT also considers compatibility as a governing factor, which facilitates the inclusion of the strap system into the MCFT formulation. In the current study, modifications were investigated to model CFRP strap retrofitted RC beams associated with either uniform or non-uniform strap spacings. An experimental investigation on strengthened and unstrengthened rectangular RC beams was carried out to validate the MCFT predictions for various strap layouts. The validation process revealed that, in general, the MCFT was able to model the shear response of the retrofitted RC beams but the representation of the softening of the concrete compressive strain, and stress, was found to be influential in the determination of the ultimate load capacity.Cambridge Commonwealth Trust; Overseas Research Studentship; Churchill College.This is the accepted version of the original publication available at http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CC.1943-5614.0000416. See also http://cedb.asce.org/cgi/WWWdisplay.cgi?308829. © 2013 the American Society of Civil Engineers
Optimisation of shear strengthened reinforced concrete beams
External prestressed carbon fibre reinforced polymer straps can be used to strengthen shear-deficient reinforced concrete structures. For an efficient shear retrofitting system, the optimum combinations of parameters such as the number of straps, strap locations, strap stiffness and initial strap prestress need to be identified. The modified compression field theory and the shear friction theory have previously been applied to carbon fibre reinforced polymer strap strengthened beams. As implemented, both of these methods are iterative. Particle swarm optimisation and genetic algorithm stochastic optimisation methods were used to reduce the computational cost associated with the shear strength evaluation and also to search the design space for carbon fibre reinforced polymer strap strengthened beams. An initial comparison across several test functions showed that the preferred optimisation algorithm depended on the characteristics of the design space. When applied to a reinforced concrete case study, the genetic algorithm was better for searching the shear friction theory shear strength design space that was characterised by several peaks. However, for the smoother modified compression field theory shear strength evaluation space, and for the design space for the carbon fibre reinforced polymer strengthened beams calculated using either the modified compression field theory or the shear friction theory, the particle swarm optimisation converged more quickly and accurately. The optimised solutions reflect the assumptions within the underlying evaluation methods. The first author is grateful for the financial support provided by the Cambridge
Commonwealth Trust, the Overseas Research Studentship and the Churchill College.This is the final published version. It can also be found on the publisher's website at: http://www.icevirtuallibrary.com/content/article/10.1680/eacm.13.00022. © ICE Publishing. All rights reserved
Micromechanical Modeling of High-Strain Thin-Ply Composites
This paper presents a micromechanical analysis for the elastic and viscoelastic behavior of high-strain thin-ply composites. The modeling approach is based on unit cell homogenization. The geometry of the internal weave architecture and ply configuration is characterized via micrographic analysis and explicitly modeled in the unit cell. The composites are modeled as Kirchhoff plates and the homogenization analysis computes the effective relaxation ABD matrix represented by Prony series using the elastic and viscoelastic properties of the constituent fiber and matrix. The formulation of the micromechanical model and numerical implementation d. Composite laminates with 3-ply and 4-ply configurations are studied
- …
