
Constraint Integration and Violation Handling for BPEL Processes

MingXue Wang, Kosala Yapa Bandara and Claus Pahl
Dublin City University, Ireland

[mwang|kyapa|cpahl]@computing.dcu.ie

Abstract

Autonomic, i.e. dynamic and fault-tolerant Web

service composition is a requirement resulting from
recent developments such as on-demand services. In
the context of planning-based service composition,
multi-agent planning and dynamic error handling are
still unresolved problems. Recently, business rule and
constraint management has been looked at for
enterprise SOA to add business flexibility. This paper
proposes a constraint integration and violation
handling technique for dynamic service composition.
Higher degrees of reliability and fault-tolerance, but
also performance for autonomously composed WS-
BPEL processes are the objectives.

1. Introduction

 Service-oriented architecture is a paradigm for
software development. Web services are platform-
independent, reusable components of business
processes. The Business Process Execution Language
for Web Services (WS-BPEL) has become the de-facto
standard for service-based workflow description and
execution. However, service composition is a complex
task and is a challenge if composition problems have to
be dealt with dynamically. Recent developments such
as on-demand service composition are examples for
the need to address dynamic fault-tolerance
compositions. Therefore, building composite Web
services with an autonomic tool is critical [1,2].
 There have been some advances based on
achievements in the artificial intelligence context, such
as Semantic Web-based planning and reasoning.
Business rule management has been adapted from
expert systems and other AI sub-disciplines to
enterprise SOA [3]. Rules or constraints, which restrict
the states and transitions the process can go through to
satisfy specified goals, add flexibility, but also and
more importantly, reliability and fault-tolerance if
possible constraint violations can be dealt with

dynamically. Constraint integration and violation
handling for dynamic service compositions is our
focus. Due to the distributed and heterogeneous nature
of Web service compositions, we cannot assume
compositions to be stable. In order to provide true
autonomy, both business level constraints as well as
technical runtime failures have to be dealt with.
Autonomic service composition needs to be capable of
monitoring and recovery from both types.
 Semantic Web service technologies, such as service
ontologies like OWL-S, combined with AI planning
have been suggested as a solution to automated service
composition: [4] uses a Golog planner based on
situation calculus, [5] uses SHOP2 with Hierarchical
Task Networking (HTN) planning. However, current
implementations are still facing some problems:
• Concurrent resource access problems arise from

multi-agent collaboration rather than single-agent
planning [4,6,7]. Multiple planners should plan
and execute workflow processes simultaneously
while ensuring mutual exclusion.

• The ability to resolve failures is often lacking.
Most approaches do not provide failure resolution
[6]. [4] offers a middle-ground strategy to avoid
service rollback problems during planning.
However, fault handling during service execution
still is missing.

 For dynamic, fault-tolerant service composition, an
interleaved approach to composition and constraint-
based execution and failure handling is an appropriate
approach in a number of application domains [4,6]. In
this paper, we use planning-based service composition
as a sample context to demonstrate a constraint
integration and violation handling technique for
autonomic service composition. We demonstrate how
the WS-BPEL fault handling mechanism can be used
for both of business constraint violations and runtime
exceptions – by offering a constraint violation monitor
integratable with any standard BPEL engine in order to
avoid overheads of additional supervision and
monitoring processes. We present a mechanism to
instrument a service composition with constraint

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

violation handling. Our aims are to demonstrate the
feasibility of the identified weaknesses and that fault-
tolerance can be achieved, and to show that this can be
addressed with acceptable overheads.
 This paper is structured as following. Section 2
analyses of interleaving approaches for dynamic
service composition. Section 3 analyses requirements
for a service notion for dynamic composition. Section
4 describes the architecture and data collection
approach. Section 5 defines our process
instrumentation algorithm for service composition.
Section 6 evaluates the approach based on a case
study. We end with a discussion of related work and
some conclusions.

2. Interleaving Approaches for Service

Composition and Execution

 Extended goals, observation and non-determinism
are three difficulties which a composition technique
needs to address in automatic service composition [8].
An extended goal approach allows a planer to consider
a set of loosely coupled goals as single planning
problem. This is a built-in ability of planners, which
we will not discuss here, but observation and non-
determinism are important. For service composition, a
composition planner often has incomplete information
initially [9]. Planners need observers or gather
information. As a solution to this problem, an
interleaved approach integrates service execution as
part of a planning and composition process (Fig.1).
The composition tool dynamically queries the
environment for determinations rather than searching
for all possibilities in a tree-like conditional plan.

Fig.1. Interleaved composition and execution

 The interleaved approach offers a high degree of
adaptability for composition and execution [6].
Compositions generated can respond to changes in the
run-time environment. For example, adding or deleting
services or changing QoS properties of services can
impact the creation and execution of the composite
service. A case study in [6] shows an interleaved
approach is most appropriate in dynamic scenarios
since it can effectively address the functional and non-
functional aspects of realizing the user request in an
integrated setting. Interleaving could even improve
planning problems with large search spaces.
 To enable composition tools to gather information
during the planning stage, we can consider primitive

services as sensing actions or world-altering actions.
Sensing services gather information, providing only
(functional) output. World-altering services change the
state of the world. In an interleaved approach,
composition and execution go hand-in-hand.
Therefore, resolving a failure requires rollback of the
services executed when a planned execution path
cannot reach a goal. A middle ground between online
(composition) and offline (execution) can be
introduced [4,5], i.e. a planner only executes sensing
services during planning. A sequenced final plan,
which contains world-altering services, is executed
after planning has ended.
 When sensing and world-altering is separated, i.e.
the middle ground online composition and offline
execution is applied, a concurrency problem appears in
relation to sharing resources with multi-agent
planning. For example, both planer A and planer B
might find (sense) one flight available at the same time
and both create a plan to book the flight. If there is
only one seat left, the flight will be overbooked.
Usually, a simple condition can be declared: ensure
that sensed information persists during the execution
and that none of the actions in the program cause it to
be violated. Further problems arise if the flight is
booked, but afterwards hotel booking fails caused by
for instance technical failures such as network,
hardware, etc. Thus, multi-agents planning and fault
recovery are two basic and critical concerns to be
addressed.

3. Service Categories

 The distinction into sensing and world-altering is
central for interleaved composition. A basic service
model is insufficient for constraint integration. We
expanded a primitive service notion as following.
 Primitive services: an executable primitive service

S is either a sensing service Sense or a world-
altering service Alter.

 World-altering services: an executable altering
service S is either a non-conditional world-altering
service Alter-NC or a conditional world-altering
service Alter-C. There shall be at least one service
Rollback that can rollback the effect of executing a
service S and does not depend on any state of
world for execution and Alter is its inverse.

 Conditional world-altering services: Alter-C
consists of conditional checking functions
SenseFct associated with a set of defined
exceptions E (fault messages), followed by a non-
conditional world-altering function AlterFct-NC.

A failure of SenseFct causes thread termination
and E to be thrown.

In order to deal with concurrency problems, we define
Alter-C for world-altering services that depends on
observations or other conditions. Based on the
conditions SenseFct as a constrained guard for
AlterFct-NC, an exception mechanism will indicate
any failure of these constraints. These constraints are
essential, since the result of not meeting them is that
AlterFct-NC will not be executed. There is also for
every Alter service at least one rollback service.

4. Constraint Violation Handling

4.1. Architecture

 Since we use a message-based, standard BPEL
exception and fault handling mechanism, we are able
to collect (sense) constraint violation data without
modification of BPEL engines. A fault caused by
service failure or any other reasons will be caught by
fault handlers and viewed as a type of violation. A
violation analysis service Analyse provides a constraint
violation analysis. Fig. 2 illustrates constraint violation
handling. A simple sequenced plan is converted into a
WS-BPEL process with conditional paths for
execution (see detail in Section 5). Data collection for
constraint violation handling is triggered by WS-BPEL
fault handlers. Analyse cooperates with a constraint
engine to make decisions on validation handling.

Fig.2. Constraints violation analysis and handling

 An Object Constraint Language (OCL) checker (an
open source component of the Eclipse EMF validation
framework) is used as our constraint engine. OCL is an
OMG defined constraint language used to constrain
Meta-Object Facility based model and based on set
theory and logic [10].

Goal.allInstances()
→select(e|e.name=’TravelReservation’)→first().criticals
 →select(ec|ec.category=’bookTaxiFailure’)=set{}

Goal.allInstances()
 →select(e|e.name=’LoanApprover’)→first().criticals
 →select(ec|ec.category=’highRisk’)=set{}

OCL constraints, as these two, can capture business
goals or technical platform requirements and are
checked dynamically during service process execution.

4.2. Fault handling and data collection

 BPEL engines usually provide a service-based
administration API to check processes that are
deployed, running and completed, variable values etc.
Three types of data are required for our application:
fault message, fault element and process execution
instance log. The instance log is only needed for
recovery as the system provides a list of completed
services for rollback or compensation.
 Fault handlers define how BPEL processes respond
when a Web services return error messages or other
exceptions. Analyse is triggered by a fault handler and
sends a query to the admin API for fault messages.
This approach slightly depends on the BPEL engine, as
admin APIs are different in different engines. Thus,
Analyse can either be engine dependable or
configurable. Two popular open-source engines are
Apaches ODE (v1.2) and ActiveBPEL (v5.0.2).

 Apache ODE ActiveBPEL
queryProcessInstance √ √

queryFaultElement √ √
queryFaultMessage √ X

 Since both admin APIs are only able to query
instance logs by default, we developed an extension
for extracting faultElement and faultMessage. In
addition, ActiveBPEL only returns an
‘EXECUT_FAULT’ instead a detailed and defined fault
message. Thus, a message-based analysis is
unavailable. We can, however, modify ActiveBPEL to
return detailed fault messages. We found query instant
logs for fault message to be much slower than using
fault handlers directly to forward fault message to
Analyse.
 As our solution (see Fig.3), we use <catch> for
business exceptions thrown from service interface. A
fault variable constraintViolation will be forwarded to
Analyse. In addition, we use <catchAll> for the rest of
the platform-specific runtime exceptions. We only
query the instance log when recovery is necessary.

<bpel:faultHandlers>
 <bpel:catch faultMessageType=”ns1:Exception”
 faultName=”ns1:Exception”

 catch variable=’constraintViolation’ faultVariable=”constraintViolation”>
 … new bpel_invoke operation = Analysis
 </bpel:catch> end bpel_faultHandler
 <bpel:catchAll>…<bpel:catchAll> start new bpel_faultHandler catchAll
<bpel:faultHandlers> new bpel_invoke operation = Analysis
 end bpel_faultHandler

 init path=0

 while path<size(p)
 path=path+1
 start new bpel_if condition AnalysisResponse==path
 for each S in p(path,size(p))
 new bpel_invoke operation=S
 end for
 new bpel_assign AnalysisResponse==0
 end new bpel_if
 end while Fig. 3. Fault handling and data collection
 set path=0 for each Alter S in p(path,size(p))

5. Service Process Instrumentation path =path+1
 start new bpel_if
 To integrate and enable the violation analysis,
Analyse is trigged by fault handling events, and
workflow execution steps are followed by an Analyse
decision. For this to take place, we need to instrument
the sequenced composition plan before its execution
with the fault handling and constraint validation. We
propose an algorithm with an execution path
parameter. We create a conditional composition plan
with all possible paths, which for decisions of Analyse
include the necessary recovery as well. Except a
default path, the other paths will only be executed
based on a corresponding response of Analyse.

 condition AnalysisResponse==’Rb’+path
 new bpel_invoke operation = R-Alter
 new bpel_invoke operation = Analysis
 end bpel_if
 end for
 start new bpel_if condition AnalysisResponse==’Re’
 new bpel_invoke operation = RePlan
 endbpel_if
 end bpel_scope
 new bpel_reply
end bpel_scope

The algorithm builds three categories of paths.
 The first category addresses constraint violations

that are acceptable, i.e. the composed process
continues be executed. The numbers of path
equals the size of the plan size(p). Initially, path
contains all S in p. It is the default path and will
achieve the planning goal if completed without
fault. path+1 does not include the previous S,
assuming a fault message thrown by S. path+1 is
created recursively until no candidate S is left in
the path.

 In additional to Analyse, we have a replanning
service Replan for full recovery and recomposition.
Recomposition is an execution fault recovery method
by reconstructing a fresh plan to achieve the same
planning goal. The faulty process will be retired and a
new plan is started. We have developed the
instrumentation and recomposition with the aim of
keeping the delay on the client side minimal [11]. The
instrumentation algorithm for a synchronized
interleaved service process uses both fault variable and
the admin API for data collection. The second category are rollback paths for Alter

when constraint violations are not acceptable. In
Section 3, we assumed each corresponding service
to have one rollback service R. Each rollback path
r is composed by one R for each Alter in P and
followed by an Analyse to determine if more Alter
invocations require rollback.

Process Instrumentation Algorithm
Input: final plan (p)
Output: executable plan (bpel_p)

start new bpel_scope
 start new bpel_faultHandler catchall The third category are recomposition paths. The

path is composed of one Analyse for recovery by
recomposition. A bpel_scope constrains all paths.
Fault handlers are located within a
bpel_repeatUntil container, a repeat condition
that only expires if path==0. A detailed BPEL
example is presented in Section 6.

 new bpel_invoke operation=logging
 end bpel_faultHandler
 new bpel_receive
 AnalyseResponse=1
 start new bpel_repeatUntil condition AnalysisResponse==0
 start new bpel_scope
 start new bpel_faultHandler

Fig. 4. Travel reservation process

6. Case Study and Evaluation

 We use a Travel Reservation system as our case
study to support the evaluation. The aim of the case
study is demonstrate that our approach addresses
problems in planning based service composition.
Particularly, we look at performance and overheads of
constraint violation handling.

6.1. Execution scenario

 Fig. 4 illustrates a travel reservation process. The
black lines represent a workflow execution scenario.
The default path=1 is executed initially. After booking
a flight, a taxi is booked for pickup on arrival.
However, S4:bookTaxi might fail. Analyse is invoked
due to a fault being caught. bookTaxiFailure might be
an acceptable violation. Analyse returns a path=5 for
continued execution. However, a hotelOverBooking
exception caused by a concurrency problem might be
thrown by S6:bookHotel – an unacceptable violation.
Analyse starts to rollback the last successful Alter
service S2:bookFlight and analyses again to see if
more altering services require rollback. If all rollback
actions are completed, the final recomposition is
activated.

6.2. Evaluation

 Based on our experiments, we can demonstrate that
our approach solves the concurrency problem in multi-
agents planning (e.g. hotelOverBooking) and is fault-

tolerant. For the latter, we included manually operated
runtime errors, including randomly turning off services
in our evaluation.
 Regarding performance, process instrumentation
does make bpel_p more complex and larger than the
original plan p. However, the size is still acceptable.
Let size(p) be the number of services in p and l the
number of Alter services in p, then

()

1
() 2

n size p

k
5size bpel_p k l

=

=
= +∑

() ()paths bpel_p size p l= +

+

1+

The formulas show the sizes of service related
activities size(bpel_p) (BPEL assign, link, etc are not
counted) and the number of paths path(bpel_p) in
bpel_p. In the first formula, 5 activities bpel_receive,
bpel_reply, Analyse, Replan, and logging are
represented. In the second formula, the constant 1
represents the recomposition path. Our evaluation
platform is a Pentium E2140 CPU, 1GB DDR2
memory, Window XP sp3, ActiveBPEL engine,
enhanced BPEL generation (includes BPEL engine
deployment file). Instrumentations only take 82
milliseconds in average.
 In our experiments, querying the admin API takes in
average 1672 milliseconds. Message passing by fault
variables only takes in average 134 milliseconds.
Querying would cause some overheads when the
violation is acceptable and no recovery is needed.
 For constraint violation handling, the total overhead
depends on the plan execution time, the number of
constraint violations, and the constraint engine
performance, etc. In the case study scenario, there is
only a violation handling overhead of in average

10.2% in a total plan execution time of in average
17281 milliseconds (not including replanning). Since
all Web services are on hosted locally, we expect
overheads in networked environments to be much
lower.

7. Discussion and Related Work

 The solution that we have implemented through our
prototype demonstrates that BPEL fault handling
mechanisms can support a high-performance constraint
violation handling based on standard BPEL engines.
While constraints integration solves some problems,
some challenges have also arisen. To provide
flexibility in business processes, various types of
constraints are required. Constraints need to be at a
context model level to capture business and technical
aspects and also need to be integrated dynamically.
Our current prototype is able to integrate context
constraints into supporting services and weave these
into BPEL processes for violation handling.
 Some related work was already covered in Section
2. [4, 5, 8] provide a solution of using various planning
techniques for dynamic service composition. However
they often lack multi-agents planning and fault-
tolerance. Researchers are also looking into constraint
integration and monitoring platforms. In [12], a
constraint language is proposed for the Dynamo
monitoring platform. However, we differ from that
approach, as we use a more simpler and more efficient
standard BPEL fault handling without requiring
additional execution monitoring subsystems. We also
provide enough flexibility towards a complete
autonomic service composition rather than defining
recovery rules for each service.

8. Conclusion

We have presented an execution failure and error
handling approach for dynamic, fault-tolerant service
composition. We have developed a constraint
integration and violation handling technique based on
the WS-BPEL fault handling mechanism. An
algorithm that generates an instrumentation of the
composed service process is at the core of our solution.
The evaluation result shows good performance and
little overheads, avoiding additional supervision
monitoring processes and components. Although
presented in the context of AI planning for
composition, other approaches such as brokers and
mediator can also be enhanced using our solution. We
have focussed on planning here to address known
weaknesses and evaluate its benefits for dynamic

service composition with constraints integration and
violation handling.

Acknowledgements

The authors would like to thank the Science Foundation
Ireland for their support for project CASCAR.

References

[1] J. Rao, and X. Su, "A Survey of Automated Web Service
Composition Methods," Semantic Web Services and Web
Process Composition, Springer Berlin, 2005.

[2] S.-C. Oh, D. Lee, and S. R. T. Kumara, “A Comparative
Illustration of AI Planning-based Web Services
Composition,” ACM SIGecom Exchanges, 2005.

[3] M. El Kharbili, and T. Keil, “Bringing Agility to
Business Process Management: Rules Deployment in an
SOA,” The 6th IEEE European Conference on Web Services,
Business Track. 2008.

[4] T.C. Sun, and Sheila McIlraith, "Adapting Golog for
Programming the Semantic Web," In Fifth International
Symposium on Logical Formalizations of Commonsense
Reasoning, pp. 195-202, 2001.

[5] D. Wu, E. Sirin, J. Hendler et al., “Automatic Web
Services Composition Using SHOP2,” Workshop on
Planning for Web Services, 2003.

[6] V. Agarwal, G. Chafle, S. Mittal et al., “Understanding
Approaches for Web Service Composition and Execution,”
Proceedings of the 1st Bangalore Annual Computing
Conference, 2007.

[7] A. Polleres. "AI Planning for Semantic Web Service
Composition? - presentation," http://www.wsmo.org/.

[8] M. Pistore, F. Barbon, P. Bertoli et al., “Planning and
Monitoring Web Service Composition,” Workshop on
Planning and Scheduling for Web and Grid Services, 2004.

[9] S. McIlraith, and T.C. Son, “Adapting Golog for
Composition of Semantic Web services” Intl Conf Principles
of Knowledge Representation and Reasoning, 2002.

[10] J. Warmer, and A. Kleppe, The Object Constraint
Language: Addison-Wesley Professional, 2003.

[11] C. Moore, M.W. Xue, and C. Pahl, “An Architecture for
Autonomic Web Servive Process Planning,” 3rd Workshop
on Emerging Web Services Technology, 2008.

[12] L. Baresi, S. Guinea, and L. Pasquale, “Towards a
Unified Framework for the Monitoring and Recovery of
BPEL Processes,” Workshop on Testing, analysis, and
verification of web services and applications, 2008.

http://www.wsmo.org/

	1. Introduction
	2. Interleaving Approaches for Service Composition and Execution
	3. Service Categories
	4. Constraint Violation Handling
	4.1. Architecture
	4.2. Fault handling and data collection

	5. Service Process Instrumentation
	6. Case Study and Evaluation
	6.1. Execution scenario
	6.2. Evaluation

	7. Discussion and Related Work
	8. Conclusion
	Acknowledgements
	References

