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Abstract 

 
Autonomic, i.e. dynamic and fault-tolerant Web 

service composition is a requirement resulting from 
recent developments such as on-demand services. In 
the context of planning-based service composition, 
multi-agent planning and dynamic error handling are 
still unresolved problems. Recently, business rule and 
constraint management has been looked at for 
enterprise SOA to add business flexibility. This paper 
proposes a constraint integration and violation 
handling technique for dynamic service composition. 
Higher degrees of reliability and fault-tolerance, but 
also performance for autonomously composed WS-
BPEL processes are the objectives. 
 
1. Introduction 
 
     Service-oriented architecture is a paradigm for 
software development. Web services are platform-
independent, reusable components of business 
processes. The Business Process Execution Language 
for Web Services (WS-BPEL) has become the de-facto 
standard for service-based workflow description and 
execution.  However, service composition is a complex 
task and is a challenge if composition problems have to 
be dealt with dynamically. Recent developments such 
as on-demand service composition are examples for 
the need to address dynamic fault-tolerance 
compositions. Therefore, building composite Web 
services with an autonomic tool is critical [1,2].  
     There have been some advances based on 
achievements in the artificial intelligence context, such 
as Semantic Web-based planning and reasoning. 
Business rule management has been adapted from 
expert systems and other AI sub-disciplines to 
enterprise SOA [3]. Rules or constraints, which restrict 
the states and transitions the process can go through to 
satisfy specified goals, add flexibility, but also and 
more importantly, reliability and fault-tolerance if 
possible constraint violations can be dealt with 

dynamically. Constraint integration and violation 
handling for dynamic service compositions is our 
focus. Due to the distributed and heterogeneous nature 
of Web service compositions, we cannot assume 
compositions to be stable. In order to provide true 
autonomy, both business level constraints as well as 
technical runtime failures have to be dealt with. 
Autonomic service composition needs to be capable of 
monitoring and recovery from both types. 
     Semantic Web service technologies, such as service 
ontologies like OWL-S, combined with AI planning 
have been suggested as a solution to automated service 
composition: [4] uses a Golog planner based on 
situation calculus, [5] uses SHOP2 with Hierarchical 
Task Networking (HTN) planning. However, current 
implementations are still facing some problems: 
• Concurrent resource access problems arise from 

multi-agent collaboration rather than single-agent 
planning [4,6,7]. Multiple planners should plan 
and execute workflow processes simultaneously 
while ensuring mutual exclusion.  

• The ability to resolve failures is often lacking.  
Most approaches do not provide failure resolution 
[6]. [4] offers a middle-ground strategy to avoid 
service rollback problems during planning. 
However, fault handling during service execution 
still is missing. 

     For dynamic, fault-tolerant service composition, an 
interleaved approach to composition and constraint-
based execution and failure handling is an appropriate 
approach in a number of application domains [4,6]. In 
this paper, we use planning-based service composition 
as a sample context to demonstrate a constraint 
integration and violation handling technique for 
autonomic service composition. We demonstrate how 
the WS-BPEL fault handling mechanism can be used 
for both of business constraint violations and runtime 
exceptions – by offering a constraint violation monitor 
integratable with any standard BPEL engine in order to 
avoid overheads of additional supervision and 
monitoring processes. We present a mechanism to 
instrument a service composition with constraint 
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violation handling. Our aims are to demonstrate the 
feasibility of the identified weaknesses and that fault-
tolerance can be achieved, and to show that this can be 
addressed with acceptable overheads. 
     This paper is structured as following. Section 2 
analyses of interleaving approaches for dynamic 
service composition. Section 3 analyses requirements 
for a service notion for dynamic composition. Section 
4 describes the architecture and data collection 
approach. Section 5 defines our process 
instrumentation algorithm for service composition. 
Section 6 evaluates the approach based on a case 
study. We end with a discussion of related work and 
some conclusions. 
 
2. Interleaving Approaches for Service 

Composition and Execution 
     
     Extended goals, observation and non-determinism 
are three difficulties which a composition technique 
needs to address in automatic service composition [8]. 
An extended goal approach allows a planer to consider 
a set of loosely coupled goals as single planning 
problem. This is a built-in ability of planners, which 
we will not discuss here, but observation and non-
determinism are important. For service composition, a 
composition planner often has incomplete information 
initially [9]. Planners need observers or gather 
information. As a solution to this problem, an 
interleaved approach integrates service execution as 
part of a planning and composition process (Fig.1). 
The composition tool dynamically queries the 
environment for determinations rather than searching 
for all possibilities in a tree-like conditional plan. 

 
Fig.1. Interleaved composition and execution 

 
     The interleaved approach offers a high degree of 
adaptability for composition and execution [6]. 
Compositions generated can respond to changes in the 
run-time environment. For example, adding or deleting 
services or changing QoS properties of services can 
impact the creation and execution of the composite 
service. A case study in [6] shows an interleaved 
approach is most appropriate in dynamic scenarios 
since it can effectively address the functional and non-
functional aspects of realizing the user request in an 
integrated setting. Interleaving could even improve 
planning problems with large search spaces. 
     To enable composition tools to gather information 
during the planning stage, we can consider primitive 

services as sensing actions or world-altering actions. 
Sensing services gather information, providing only 
(functional) output. World-altering services change the 
state of the world. In an interleaved approach, 
composition and execution go hand-in-hand. 
Therefore, resolving a failure requires rollback of the 
services executed when a planned execution path 
cannot reach a goal. A middle ground between online 
(composition) and offline (execution) can be 
introduced [4,5], i.e. a planner only executes sensing 
services during planning. A sequenced final plan, 
which contains world-altering services, is executed 
after planning has ended.  
     When sensing and world-altering is separated, i.e. 
the middle ground online composition and offline 
execution is applied, a concurrency problem appears in 
relation to sharing resources with multi-agent 
planning. For example, both planer A and planer B 
might find (sense) one flight available at the same time 
and both create a plan to book the flight. If there is 
only one seat left, the flight will be overbooked. 
Usually, a simple condition can be declared: ensure 
that sensed information persists during the execution 
and that none of the actions in the program cause it to 
be violated. Further problems arise if the flight is 
booked, but afterwards hotel booking fails caused by 
for instance technical failures such as network, 
hardware, etc. Thus, multi-agents planning and fault 
recovery are two basic and critical concerns to be 
addressed. 

 
3. Service Categories 
 
     The distinction into sensing and world-altering is 
central for interleaved composition. A basic service 
model is insufficient for constraint integration. We 
expanded a primitive service notion as following. 
 Primitive services: an executable primitive service 

S is either a sensing service Sense or a world-
altering service Alter. 

 World-altering services: an executable altering 
service S is either a non-conditional world-altering 
service Alter-NC or a conditional world-altering 
service Alter-C. There shall be at least one service 
Rollback that can rollback the effect of executing a 
service S and does not depend on any state of 
world for execution and Alter is its inverse. 

 Conditional world-altering services: Alter-C 
consists of conditional checking functions 
SenseFct associated with a set of defined 
exceptions E (fault messages), followed by a non-
conditional world-altering function AlterFct-NC. 



A failure of SenseFct causes thread termination 
and E to be thrown. 

In order to deal with concurrency problems, we define 
Alter-C for world-altering services that depends on 
observations or other conditions. Based on the 
conditions SenseFct as a constrained guard for 
AlterFct-NC, an exception mechanism will indicate 
any failure of these constraints. These constraints are 
essential, since the result of not meeting them is that 
AlterFct-NC will not be executed. There is also for 
every Alter service at least one rollback service. 
 
4. Constraint Violation Handling 
 
4.1. Architecture 
 
     Since we use a message-based, standard BPEL 
exception and fault handling mechanism, we are able 
to collect (sense) constraint violation data without 
modification of BPEL engines. A fault caused by 
service failure or any other reasons will be caught by 
fault handlers and viewed as a type of violation. A 
violation analysis service Analyse provides a constraint 
violation analysis. Fig. 2 illustrates constraint violation 
handling. A simple sequenced plan is converted into a 
WS-BPEL process with conditional paths for 
execution (see detail in Section 5). Data collection for 
constraint violation handling is triggered by WS-BPEL 
fault handlers. Analyse cooperates with a constraint 
engine to make decisions on validation handling.  
 

 
Fig.2. Constraints violation analysis and handling 

 
     An Object Constraint Language (OCL) checker (an 
open source component of the Eclipse EMF validation 
framework) is used as our constraint engine. OCL is an 
OMG defined constraint language used to constrain 
Meta-Object Facility based model and based on set 
theory and logic [10].  
 
Goal.allInstances() 
→select(e|e.name=’TravelReservation’)→first().criticals 
 →select(ec|ec.category=’bookTaxiFailure’)=set{} 
 

Goal.allInstances() 
 →select(e|e.name=’LoanApprover’)→first().criticals 
 →select(ec|ec.category=’highRisk’)=set{} 
 
OCL constraints, as these two, can capture business 
goals or technical platform requirements and are 
checked dynamically during service process execution. 
 
4.2. Fault handling and data collection 
 
     BPEL engines usually provide a service-based 
administration API to check processes that are 
deployed, running and completed, variable values etc. 
Three types of data are required for our application: 
fault message, fault element and process execution 
instance log. The instance log is only needed for 
recovery as the system provides a list of completed 
services for rollback or compensation.  
     Fault handlers define how BPEL processes respond 
when a Web services return error messages or other 
exceptions. Analyse is triggered by a fault handler and 
sends a query to the admin API for fault messages. 
This approach slightly depends on the BPEL engine, as 
admin APIs are different in different engines. Thus, 
Analyse can either be engine dependable or 
configurable. Two popular open-source engines are 
Apaches ODE (v1.2) and ActiveBPEL (v5.0.2).  
 

 Apache ODE ActiveBPEL 
queryProcessInstance √ √ 

queryFaultElement √ √ 
queryFaultMessage √ X 

  
    Since both admin APIs are only able to query 
instance logs by default, we developed an extension 
for extracting faultElement and faultMessage. In 
addition, ActiveBPEL only returns an 
‘EXECUT_FAULT’ instead a detailed and defined fault 
message. Thus, a message-based analysis is 
unavailable. We can, however, modify ActiveBPEL to 
return detailed fault messages. We found query instant 
logs for fault message to be much slower than using 
fault handlers directly to forward fault message to 
Analyse. 
     As our solution (see Fig.3), we use <catch> for 
business exceptions thrown from service interface. A 
fault variable constraintViolation will be forwarded to 
Analyse. In addition, we use <catchAll> for the rest of 
the platform-specific runtime exceptions. We only 
query the instance log when recovery is necessary. 
 
<bpel:faultHandlers> 
   <bpel:catch faultMessageType=”ns1:Exception” 
       faultName=”ns1:Exception” 



                              catch variable=’constraintViolation’        faultVariable=”constraintViolation”> 
       …         new bpel_invoke operation = Analysis 
      </bpel:catch>       end bpel_faultHandler 
      <bpel:catchAll>…<bpel:catchAll>       start new bpel_faultHandler catchAll 
<bpel:faultHandlers>         new bpel_invoke operation = Analysis 
       end bpel_faultHandler 

      init path=0 

 

      while path<size(p) 
        path=path+1 
        start new bpel_if  condition AnalysisResponse==path 
          for each S in p(path,size(p)) 
            new bpel_invoke operation=S 
          end for 
          new bpel_assign AnalysisResponse==0 
       end new bpel_if   
     end while Fig. 3. Fault handling and data collection 
     set path=0       for each Alter S in p(path,size(p)) 

5. Service Process Instrumentation        path =path+1 
       start new bpel_if   
     To integrate and enable the violation analysis, 
Analyse is trigged by fault handling events, and 
workflow execution steps are followed by an Analyse 
decision. For this to take place, we need to instrument 
the sequenced composition plan before its execution 
with the fault handling and constraint validation. We 
propose an algorithm with an execution path 
parameter. We create a conditional composition plan 
with all possible paths, which for decisions of Analyse 
include the necessary recovery as well. Except a 
default path, the other paths will only be executed 
based on a corresponding  response of Analyse.  

                          condition AnalysisResponse==’Rb’+path 
        new bpel_invoke operation = R-Alter 
        new bpel_invoke operation = Analysis 
      end bpel_if 
    end for 
    start new bpel_if  condition AnalysisResponse==’Re’ 
      new bpel_invoke operation = RePlan 
    endbpel_if 
    end bpel_scope 
    new bpel_reply 
end bpel_scope 
 
The algorithm builds three categories of paths.  
 The first category addresses constraint violations 

that are acceptable, i.e. the composed process 
continues be executed. The numbers of path 
equals the size of the plan size(p). Initially, path 
contains all S in p. It is the default path and will 
achieve the planning goal if completed without 
fault. path+1 does not include the previous S, 
assuming a fault message thrown by S. path+1 is 
created recursively until no candidate S is left in 
the path.  

     In additional to Analyse, we have a replanning 
service Replan for full recovery and recomposition. 
Recomposition is an execution fault recovery method 
by reconstructing a fresh plan to achieve the same 
planning goal. The faulty process will be retired and a 
new plan is started. We have developed the 
instrumentation and recomposition with the aim of 
keeping the delay on the client side minimal [11]. The 
instrumentation algorithm for a synchronized 
interleaved service process uses both fault variable and 
the admin API for data collection.   The second category are rollback paths for Alter 

when constraint violations are not acceptable. In 
Section 3, we assumed each corresponding service 
to have one rollback service R. Each rollback path 
r is composed by one R for each Alter in P and 
followed by an Analyse to determine if more Alter 
invocations require rollback.   

 
Process Instrumentation Algorithm  
Input: final plan (p) 
Output: executable plan (bpel_p) 
 
start new bpel_scope 
  start new bpel_faultHandler catchall  The third category are recomposition paths. The 

path is composed of one Analyse for recovery by 
recomposition. A bpel_scope constrains all paths. 
Fault handlers are located within a 
bpel_repeatUntil  container, a repeat condition 
that only expires if path==0. A detailed BPEL 
example is presented in Section 6.  

    new bpel_invoke operation=logging 
  end bpel_faultHandler 
  new bpel_receive 
  AnalyseResponse=1 
  start new bpel_repeatUntil condition AnalysisResponse==0 
    start new bpel_scope 
      start new bpel_faultHandler  



 
Fig. 4. Travel reservation process 

 
 

 
6. Case Study and Evaluation 
 

 We use a Travel Reservation system as our case 
study to support the evaluation. The aim of the case 
study is demonstrate that our approach addresses 
problems in planning based service composition. 
Particularly, we look at performance and overheads of 
constraint violation handling. 

6.1. Execution scenario 
 
     Fig. 4 illustrates a travel reservation process. The 
black lines represent a workflow execution scenario. 
The default path=1 is executed initially. After booking 
a flight, a taxi is booked for pickup on arrival. 
However, S4:bookTaxi might fail. Analyse is invoked 
due to a fault being caught. bookTaxiFailure might be 
an acceptable violation. Analyse returns a path=5 for 
continued execution. However, a hotelOverBooking 
exception caused by a concurrency problem might be 
thrown by S6:bookHotel – an unacceptable violation. 
Analyse starts to rollback the last successful Alter 
service S2:bookFlight and analyses again to see if 
more altering services require rollback. If all rollback 
actions are completed, the final recomposition is 
activated. 

6.2. Evaluation 
      
     Based on our experiments, we can demonstrate that 
our approach solves the concurrency problem in multi-
agents planning (e.g. hotelOverBooking) and is fault-

tolerant. For the latter, we included manually operated 
runtime errors, including randomly turning off services 
in our evaluation. 
     Regarding performance, process instrumentation 
does make bpel_p more complex and larger than the 
original plan p. However, the size is still acceptable. 
Let size(p) be the number of services in p and l the 
number of Alter services in p, then 

( )

1
( ) 2

n size p

k
5size bpel_p k l

=

=
= +∑

( ) ( )paths bpel_p size p l= +

+

1+

  

 
The formulas show the sizes of service related 
activities size(bpel_p) (BPEL assign, link, etc are not 
counted) and the number of paths path(bpel_p)  in 
bpel_p. In the first formula, 5 activities bpel_receive, 
bpel_reply, Analyse, Replan, and logging are 
represented. In the second formula, the constant 1 
represents the recomposition path. Our evaluation 
platform is a Pentium E2140 CPU, 1GB DDR2 
memory, Window XP sp3, ActiveBPEL engine, 
enhanced BPEL generation (includes BPEL engine 
deployment file). Instrumentations only take 82 
milliseconds in average.  
    In our experiments, querying the admin API takes in 
average 1672 milliseconds. Message passing by fault 
variables only takes in average 134 milliseconds. 
Querying would cause some overheads when the 
violation is acceptable and no recovery is needed. 
     For constraint violation handling, the total overhead 
depends on the plan execution time, the number of 
constraint violations, and the constraint engine 
performance, etc. In the case study scenario, there is 
only a violation handling overhead of in average 



10.2% in a total plan execution time of in average 
17281 milliseconds (not including replanning). Since 
all Web services are on hosted locally, we expect 
overheads in networked environments to be much 
lower.  
 
7. Discussion and Related Work 
 
     The solution that we have implemented through our 
prototype demonstrates that BPEL fault handling 
mechanisms can support a high-performance constraint 
violation handling based on standard BPEL engines. 
While constraints integration solves some problems, 
some challenges have also arisen. To provide 
flexibility in business processes, various types of 
constraints are required. Constraints need to be at a 
context model level to capture business and technical 
aspects and also need to be integrated dynamically. 
Our current prototype is able to integrate context 
constraints into supporting services and weave these 
into BPEL processes for violation handling.  
     Some related work was already covered in Section 
2. [4, 5, 8] provide a solution of using various planning 
techniques for dynamic service composition. However 
they often lack multi-agents planning and fault-
tolerance. Researchers are also looking into constraint 
integration and monitoring platforms. In [12], a 
constraint language is proposed for the Dynamo 
monitoring platform. However, we differ from that 
approach, as we use a more simpler and more efficient 
standard BPEL fault handling without requiring 
additional execution monitoring subsystems. We also 
provide enough flexibility towards a complete 
autonomic service composition rather than defining 
recovery rules for each service.  
 
8. Conclusion 
 
We have presented an execution failure and error 
handling approach for dynamic, fault-tolerant service 
composition. We have developed a constraint 
integration and violation handling technique based on 
the WS-BPEL fault handling mechanism. An 
algorithm that generates an instrumentation of the 
composed service process is at the core of our solution. 
The evaluation result shows good performance and 
little overheads, avoiding additional supervision 
monitoring processes and components. Although 
presented in the context of AI planning for 
composition, other approaches such as brokers and 
mediator can also be enhanced using our solution. We 
have focussed on planning here to address known 
weaknesses and evaluate its benefits for dynamic 

service composition with constraints integration and 
violation handling. 
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