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This paper presents a micromechanical analysis for the elastic and viscoelastic behavior of
high-strain thin-ply composites. The modeling approach is based on unit cell homogenization.
The geometry of the internal weave architecture and ply configuration is characterized via
micrographic analysis and explicitly modeled in the unit cell. The composites are modeled as
Kirchhoff plates and the homogenization analysis computes the effective relaxationABDmatrix
represented by Prony series using the elastic and viscoelastic properties of the constituent fiber
and matrix. The formulation of the micromechanical model and numerical implementation
are presented. Composite laminates with 3-ply and 4-ply configurations are studied.

Nomenclature
ABD relaxation ABD matrix
aT shift factor
C relaxation modulus tensor
N force resultant
T temperature
T0 reference temperature
ε strain
κ curvature
ρ relaxation time
σ stress

I. Introduction
With the demand for high performance light weight structural materials in the aerospace industry, thin-ply composites

have gained interest in the aerospace structures community due to various design capabilities that are proper from them.
Thin-ply composites are composed of thin spread-tows manufactured from large tows that undergo a careful spreading
process. These processes allow to reduce the thickness of the tows up to six fold [1] producing composites much thinner
than the conventional composites.

The capability of manufacturing thin-ply composites allows more plies to be used at different orientations for the
same thickness of their conventional counterparts and achieve improved mechanical performance [2]. These thin fiber
composites can be used for space applications in thin deployable reflector concepts [3] as carbon fiber reinforced
sheets [4, 5] and structures consisting of tape spring elements. The applications for these structural elements include
ultra-thin deployable booms [6, 7] for solar sails [8], stiff and lightweight truss elements in space structures. The
aforementioned structures deploy into a volume larger than a standard payload shroud requiring storage in a smaller
space for transportation. For example, in new deployable reflector concept [3], the carbon fiber reinforced plastic sheets
in the structure are folded to obtain a configuration required for transportation.

The space structures of this nature are self-deployed by the strain energy stored in the system when folding. The
composites are made from polymer matrix and carbon fiber. The matrix is a polymer resin with inherent viscoelastic
behavior and this causes problems of reduction in the strain energy stored in the composites over time, hindering
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the self-deployment. Since the composites are subjected to high strains and bent to high curvatures, the mechanical
properties of these composites are crucial to assessing how the structure will behave during and after deployment.
The classical laminate theory can accurately predict the in-plane properties of fiber composites but over-predict the
bending properties by 200%-400% [9]. There have been developments in research in testing to assess the elastic [1]
and viscoelastic [10] behavior of high-strain thin-ply composites. Testing cannot provide a thorough understanding
of the mechanical behavior due to difficulty in acquiring coupling effects inherent in composites, therefore numerical
modeling has been a successful passage over the years to fully assess both elastic and viscoelastic behavior of composites.
Although the elastic and viscoelastic behavior of conventional composites have been studied [11, 12] through numerical
models, the knowledge on behavior of high-strain thin-ply composites is limited.

This study focuses on micromechanical models for predicting the elastic and viscoelastic properties of thin-ply
composites. Micrographs are studied to extract the geometric parameters of the woven thin-ply laminates. Two
homogenized models of two scales are used in the study to determine the mechanical properties of the laminates. The
first model is used to assess the mechanical properties of a unidirectional tow and the mechanical properties acquired
from this model are used in the second model to assess the laminates in both elastic and viscoelastic behaviors. For the
elastic analysis the ABD matrix is formulated and bending behavior is studied for high curvatures, whereas viscoelastic
behavior is characterized in the form of an ABD relaxation matrix and is formulated for two different orientations of the
laminate.

II. Viscoelastic Plate Model
We first introduce a viscoelastic plate model [12] describing the mechanical constitutive response of thin-ply

composites. The time and temperature dependent behavior of the composite is modeled with linear viscoelasticity theory.
The three-dimensional stress-strain relation of a continuum is expressed by the Boltzmann superposition integral:

σi(t) =
∫ t

0
Ci j(t − τ)

dεj
dτ

dτ (1)

where σ and ε are stress and strain ordered according to the Voigt notation, t is time, and C is the 6-by-6 relaxation
modulus tensor. The number of independent entries depend on the material symmetry in the same way as in elasticity
theory. All the entries in the relaxation modulus tensor are functions of time and temperature represented by Prony
series defined by

Ci j = Ci j ,∞ +

n∑
k=1

Ci j ,k exp (
−t

aT ρk
) (2)

where Ci j ,∞ are the long-term moduli, Ci j ,k are the Prony coefficients, ρk are the relaxation times at the reference
temperature T0, and aT is the temperature shift factor. In this formulation, the relaxation times are not dependent on
material symmetry and all entries in the modulus tensor have the same set of relaxation times.

The temperature dependence is included in the constitutive equations through the temperature shift factor aT that is
based on the time-temperature superposition principle. The shift factor is defined as

aT =
ρ(T)
ρ(T0)

(3)

The material is described as thermorheologically simple if the same shift factor applies to all relaxation times. This
is the behavior assumed in this paper. The viscoelastic plate model is constructed by applying the Kirchhoff assumptions
that present the strain field as:

ε1 = ε1, ε2 = ε2 + x3κ2, ε6 = ε3 + x3κ3 (4)

ε3 = ε4 = ε5 = 0 (5)

where ε and κ are the in-plane strains and the curvatures of the plate reference plane. The force and moment resultants,
N and M , are obtained by integrating the stresses over the plate thickness h,

N1 =

∫
h

σ1dx3, N2 =

∫
h

σ2dx3, N3 =

∫
h

σ6dx3 (6)
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M1 =

∫
h

x3σ1dx3, M2 =

∫
h

x3σ2dx3, M3 =

∫
h

x3σ6dx3 (7)

Substituting the 3D strains into the 3D constitutive equations presented in Eq. (1) and then into the force and moment
resultants completes the viscoelastic plate model,

N i(t) =
∫ t

0
Ai j(t − τ)

dε j(τ)
dτ

dτ +
∫ t

0
Bi j(t − τ)

dκ j(τ)
dτ

dτ (8)

M i(t) =
∫ t

0
Bi j(t − τ)

dε j(τ)
dτ

dτ +
∫ t

0
Di j(t − τ)

dκ j(τ)
dτ

dτ (9)

where A, B, and D are the extensional relaxation stiffness, extension-bending coupling relaxation stiffness, and bending
relaxation stiffness matrix respectively as defined by a Kirchhoff plate. They each have a dimension of 3-by-3. Each
entry of the ABD matrix is represented by a Prony series, and is dependent on the viscoelastic properties of the fiber and
matrix, the weave geometry, and the layup. The Prony series representation is given by

Ai j = Ai j ,∞ +

n∑
k=1

Ai j ,k exp−(
t
ρk
) (10)

Bi j = Ai j ,∞ +

n∑
k=1

Bi j ,k exp−(
t
ρk
) (11)

Di j = Di j ,∞ +

n∑
k=1

Di j ,k exp−(
t
ρk
) (12)

III. Material Properties
Layups made of three and four plies are investigated in this study. All composite coupons are fabricated with M30S

carbon fiber and PMT-F7 epoxy resin. The longitudinal stiffness E1 of the fibers was obtained from Toray Industries
[13]. The other values were estimated by using E1 and data in literature [11]. The values acquired and calculated are
given in Table 1. The M30S fibers have a diameter of 5.5 µm.

Table 1 Material Properties of M30S.

Properties M30S Fiber
Longitudinal Stiffness, E1 (MPa) 294,000
Transverse Stiffness, E2 (MPa) 29148
Shear Stiffness, G12 (MPa) 11310
In-plane Shear Stiffness, G23 (MPa) 10000
Poisson’s Ratio, ν12=ν13 0.2
Poisson’s Ratio, ν23 0.46

The epoxy matrix is regarded as an isotropic viscoelastic material pertaining to the material model as demonstrated
in Section II. The relaxation modulus for the epoxy at 30°C was acquired from literature [14] and plotted in Fig. 1. The
epoxy was assumed to have a constant Poisson’s ratio of 0.36.
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Fig. 1 Uniaxial relaxation modulus of PMT-F7 epoxy at 30°C.

IV. Micromechanical Models
This section describes the approach and implementation of a numerical model to assess the viscoelastic behavior of

thin-ply laminates. Key geometric properties are obtained from micrographs to create the unit cell geometry which
is followed by a two-step homogenization technique [12] to formulate the numerical model. The unit cell is selected
such that it remains a representative volume element when the entire composite is considered. The analyses were
carried out on two different orientations of the laminates as given in Fig. 2. Namely 45° and 0°. The thin-ply laminates
studied in this paper are potential material constituents for the thin-shell composite boom concepts in the Advanced
Composite-Based Solar Sail System (ACS3) [8] developed at NASA Langley Research Center.

(a) (b)

Fig. 2 Laminate orientations: a) 0o orientation of laminate, and b) 45o orientation of laminate.

A. Unit Cell Geometry
The composites studied in the paper are fabricated laying up three and four plies of plain weave lamina. By

translating plies on one-another, an infinite number of ply arrangements can be obtained for any composite with two or
more plies. Here the mechanical properties of composites with plies in-phase configuration are studied which takes a
form as in Fig. 3.
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(a) (b)

Fig. 3 In phase configurations: a) 3-ply plain weave laminate, and b) 4-ply plain weave laminate.

The geometric parameters required to define the unit cell are the tow cross-sectional shape, tow area and tow weave
geometry. A typical micrograph of the 4-ply composite is shown in Fig. 4. The determination of geometric properties
was carried out by using the ImageJ software [15]. The width w of the tows was obtained by measuring a carefully
drawn horizontal line across the width of the tow. Tow spacing s was measured following a similar methodology and
this was incorporated with the tow width to calculate the weave length l given by

l = 2(w + s) (13)

The laminate thickness was obtained by measuring a vertical line drawn across the laminate and an eighth of this value
was considered as the tow thickness after confirming that this value agrees with the measurements of individual tows.
The area of a polygon traced around the tow was measured to be the tow area.

Fig. 4 Micrograph of M30S/PMT-F7 Composite.

Another critical parameter is the fiber volume fraction of the tows. Several micrographs were used in the format as
in Fig. 5 with an area of interest bounded by a rectangle. The area of one fiber was multiplied by the number of fibers in
the area of interest to calculate the area fraction of fibers which is identical to the tow fiber volume fraction. Since
there is resin residing surrounding the woven tows, the volume fraction of fiber in the laminate is different. This was
done by first measuring the curved length of the fibers along a weave length to calculate the volume of the tows in a
representative unit cell. The volume of fiber in the entire representative unit cell can then be found by using the tow
fiber volume fraction. Taking the volume average of the fiber over the representative unit cell gives the overall fiber
volume fraction of the laminate. The geometric parameters are summarized in Table 2.

Fig. 5 Cross section of a tow.
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Table 2 Geometric properties of the cured M30S/PMT-F7 composites.

Geometric Properties 3-Ply 4-Ply
Weave length 6.674 mm 6.674 mm
Laminate thickness 0.171 mm 0.228 mm
Maximum tow thickness 0.0286 mm 0.0286 mm
Tow width 3.164 mm 3.164 mm
Tow area 0.0802 mm2 0.0802 mm2

Fiber volume fraction of tow 0.62 0.62
Fiber volume fraction of laminate 0.52 0.52

The geometry of the unit cell was modeled in TexGen [16] (Fig. 6), an open source textile modeling software. The
waviness of the tows were defined to follow the shape of a spline curve and a constant tow cross section geometry was
defined along the spline characterized by a super ellipse [17] in the following form

x = a sin θ (14)
y = b cosn θ (15)

where a and b are half the width and height of the super ellipse respectively. The value of n was selected such that the
tow cross-sectional area of the model matches that of the actual tows. The polygon shifts from an ellipse to a rectangle
as n goes from 1 to 0. At n=0.6 the area of the super ellipse was comparable to the actual cross sectional area of the tow.

(a) (b)

(c)

Fig. 6 Unit cell geometries as modeled in TexGen: a) 3-ply plain weave laminate, b) 4-ply plain weave laminate,
and c) 4-ply 45o rotated laminate.

B. Tow Model
The epoxy as discussed in Section III intrinsically shows viscoelastic behavior where as the fibers do not manifest

such characteristics hence behaving elastically over time. Therefore, this integration of the fibers and matrix within
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the tow gives effect to a combined material property definition which accompanies viscoelastic behavior. Therefore
since the tows are modeled as a single continuum in the numerical model the viscoelastic behavior of the tows has to
be characterized. The tows fundamentally can be considered as an assembly with unidirectional fiber embedded in a
matrix. The behavior of this system can be described by a model formulated with a single fiber surrounded by matrix as
shown in Fig. 7. This implies the assumption of a square arrangement of fibers within the tows.

The model is essentially a cube with dimensions dictated by the tow volume fraction and the fiber diameter.
Furthermore, the material behavior of the model is transversely isotropic in the 2-3 plane. The length of the cube is
L=6.19 µm which was calculated to comply with the tow volume fraction of 0.62. The analysis was performed by using
Abaqus [18] finite element package. Six reference points were located next to each surface on the exterior of the unit cell
and the degrees of freedom of the nodes on the surface of the each side of the cube were constrained to the respective
reference point. The three reference points X1, Y1 and Z1 are connected to the three surfaces as shown in Fig. 7 , and
the reference points X2, Y2, Z2 are located on respective opposite faces of the unit cell. The model was meshed with
linear tetrahedral elements.

Fig. 7 Unit cell of a unidirectional tow.

The constitutive relationship which describes the material model of the unidirectional tow is given by Eq.(1) and C
is the relaxation modulus tensor of the tow which contains the parameters that are required to be deduced from the
numerical analysis of the unidirectional tow model and has the form

C =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C22 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55


(16)

where C44 can be calculated by C22 and C23 which is facilitated from transverse isotropy as

C44 =
C22 − C23

2
(17)

The five independent coefficients C11, C12, C22, C23 and C55 can be found by carrying out three different simulations.
For example, to find C11 a 0.1% strain was given to the unit cell in the 1-direction setting all other strains to zero. The
simulation was carried out in two time steps, the first being 1 second, was used to impose the strain on the model and the
second step holds the strain applied in the first step for a time period of 1014 seconds. The stress relaxation of σ1(t) was
found over time for the unit cell to calculate C11. The data obtained over the period of time was fit into a Prony series as
defined in Eq.( 2). The relaxation times (ρk) of the Prony Series were set to be as same as that of the epoxy PMT-F7.
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C. Laminate Model
The laminate was treated as a viscoelastic Kirchhoff plate and the relaxation ABD matrix that describes the material

model of the laminate can be found by the homogenization carried out for the laminate unit cell model. The matrix
surrounding the tows was defined as an isotropic viscoelastic material and the tows were defined by the material model
as formulated in Sec.IV.B. The representative unit cell formulated in TexGen is meshed with tetrahedral linear elements
and exported to Abaqus for numerical analysis. The model for the 3-ply plain weave laminate is shown in Fig. 8. The
4-ply plain weave at 0° and 45° were set up in an identical way.

Fig. 8 Finite element mesh of 3-ply laminate.

Four reference points (X1, X2, Y1, Y2) located on the periphery of the unit cell are constrained to the plate surfaces
by means of coupling constrains in ABAQUS. The goal is to find the ABD relaxation matrix (Eqs. 10-12) that describes
the properties of the composite. The periodicity of the unit cell is assured by applying periodic boundary conditions
to the reference points. The constraints for relative translations and rotations of the opposite reference points of the
assumed viscoelastic Kirchhoff plate can be defined as

∆u1
1 = ε1∆L (18)

∆u1
2 =

1
2
ε3∆L (19)

∆u1
3 = −

1
2
κ3x2∆L (20)

∆θ1
1 = −

1
2
κ3∆L (21)

∆θ1
2 = κ1∆L (22)

∆θ1
3 = 0 (23)

∆u2
1 =

1
2
ε3∆L (24)

∆u2
2 = ε2∆L (25)
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∆u2
3 = −

1
2
κ3x1∆L (26)

∆θ2
2 =

1
2
κ3∆L (27)

∆θ2
1 = −κ2∆L (28)

∆θ2
3 = 0 (29)

where u and θ are translations and rotations of the reference points and subscripts in u denote the direction and the
subscripts in θ denote the axis of rotation. The superscripts represent the direction of the connecting nodes in the
opposite faces and ∆L is the distance between the opposite faces of the plate model. Translations and rotations are
applied to the boundary reference points to impose the desired mid-plane strains and out-of-plane curvatures. The
methodology to calculate the entries of the ABD matrix is similar to that followed in Sec.IV.B.

V. Results

A. Elastic Behavior
For the 3-ply plain weave laminate, non-linear geometric simulations in the elastic domain were carried out to

obtain the ABD stiffness matrix. A two step homogenization was followed for this analysis, first to find the engineering
constants of the unidirectional fiber composite, in other words the tows and the second step to incorporate these
engineering constants in Kirchhoff elastic plate model. The engineering constants acquired from the unidirectional tow
model are presented in Table 3.

Table 3 Properties of cured M30S/PMT-F7 tow.

Tow Properties M30S/PMT-F7
Longitudinal Stiffness, E1 (MPa) 183500
Transverse Stiffness, E2=E3 (MPa) 9064
Shear Stiffness, G12=G13 (MPa) 5941
In-plane Shear Stiffness, G23 (MPa) 3106
Poisson’s ratio, ν12=ν13 0.28
Poisson’s ratio, ν23 0.4

The ABD matrix obtained for the plain weave composite is

ABD =



11900 467 0 0 2 −1
467 11900 0 0 21 5
0 0 745 −1 0 0
−3 1 0 28 1 −10
1 41 0 1 28 −10
10 −10 4 0 0 16


(30)

Here the A matrix was obtained in the expected form without any coupling between axial and shear components. The
B matrix which relates the in-plane loads to curvatures and the moments to in-plane strains, shows non-zero values and
fails to retain symmetry of the matrix. It was noted that these values become prominent when carrying out a non-linear
geometric analysis on the unit cell model as opposed to having insignificant values in the linear geometric case. The D
matrix does not show symmetry as well. These need to be further investigated in the elastic characterization.
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Simulations for bending were carried out for high curvatures and the output was compared against the experimental
results obtained from bending tests that were performed on the 3-ply laminate, using the Column Bending Test method
[1]. The results are illustrated in Fig. 9. The numerical analysis was carried out again by using quadratic elements in
place of linear elements and similar results were obtained. A linear moment curvature response was obtained for both
numerical simulation and testing. Here, there is a 3.5% difference in the bending stiffness between the values acquired
from numerical analysis and testing. One reason for this discrepancy can be that, when constructing the representative
volume element, the plies in-phase configuration is assumed even though in reality the types of configurations can be of
a wide range.
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Fig. 9 The moment curvature response for the 3-ply plain weave laminate.

B. Viscoelastic Behavior
For the 4-ply plain weave laminate, viscoelastic analysis was carried out for both 0° and 45° cases. Each term in the

relaxation modulus tensor for the unidirectional tow model was formulated in the form of a Prony series by obtaining
the relaxation data from the numerical analysis and performing a non-linear curve fit using the least squares method in
Matlab [19]. The entries in the relaxation modulus tensor C obtained from this method are plotted in Fig. 10.
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Fig. 10 Tow relaxation moduli.
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Note that the time dependence of C11 is insignificant since the fibers are dominant in the 1-direction where the
elastic behavior is prominent. The Prony series coefficients are given in Appendix Table A.2.

Non-linear geometric analyses were performed on the 4-ply unit cell (0°) for stretching and linear geometric analysis
was performed for bending. Again the Prony coefficients for the ABD relaxation matrix were found from the relaxation
data by using the non-linear curve fitting in Matlab. The Prony series are plotted in Fig. 11 and Fig. 12 and the Prony
coefficients are given in Appendix Table A.3.
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Fig. 11 In-plane relaxation coefficients of 4-ply lamina.

Again A11 shows little relaxation since there are fibers dominating the behavior in 1-direction. The coupling
coefficient A12 shows considerable relaxation. The same behavior can be seen from A33 which is the shear relaxation
stiffness with even more relaxation towards the end of the time span considered.
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Fig. 12 Out-of-plane relaxation coefficients of 4-ply lamina.

Bending stiffness D22 has a considerable 18% reduction in value, in the time span considered. In applications of
deployable booms, this would mean that the moment causing the self deploying effect reduces during long-term stowage
which needs to be addressed when designing the structures.

Numerical analysis for the unit cell for the 4-ply lamina rotated by 45° was performed in a similar manner and the
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Prony series for the terms in ABD relaxation matrix are plotted in Fig. 13 and Fig. 14 and the Prony coefficients are
given in Appendix Table A.4.
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Fig. 13 In-plane relaxation coefficients of 45o rotated four-ply laminate.

The A11 here follows a similar behavior to that of 0° case with small relaxation, but numerically less in value since
the stiffness is dependent on fibers oriented at a 45o angle. In contrast to the previous case, A12 exhibits significant
relaxation and A33 shows insignificant relaxation overtime.
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Fig. 14 Out-of-plane relaxation coefficients of 45o rotated 4-ply laminate.

The reduction in bending stiffness D22 is a significant 38% in the time span considered and the stiffness is much
lower compared to the 0o case but the coupling term is much higher.

The distribution of stresses in the 1-direction for bending are illustrated in Fig. 15 and Fig. 16 for two moments in
time, first one at t=0 s which is the start of the second step and the other one is at t=1014 s. The relaxation of stress can
be observed from the stress plots at the, two different moments in time.
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(a) (b)

Fig. 15 Bending of 4-ply laminate oriented at 0o: a) Stress distribution in 1-direction at t=0 s, and b) Stress
distribution in 1-direction at t=1014 s.

(a) (b)

Fig. 16 Bending of 4-ply laminate oriented at 45o: a) Stress distribution in 1-direction at t=0 s, and b) Stress
distribution in 1-direction at t=1014 s.

VI. Conclusion
The thin-ply composites have become a crucial component in light weight deployable structures over the years. The

structure of a thin composite, in a material point of view is a complex assembly which has caught a lot of interest among
researchers. The integration of two different materials one being the epoxy with viscoelastic material properties and
the fiber showing only elastic behavior has a combined effect on the structure. Furthermore, the tows been woven in
different directions raises more questions as to how the overall stiffness of the laminates vary as studied in different
orientations. So a model has been formulated to study the elastic behaviors, viscoelastic behaviors as well as the effect
of orientation of thin ply laminates.

A two scale homogenization was adapted, first one to build the material model of unidirectional lamina which
describes the behavior of the tows. This was performed for both the elastic and viscoelastic behavior considering
isotropy in the transverse direction. Elastic model of the tows incorporated with the woven fiber plate model was used
to assess the bending behavior of the 3-ply laminate at high curvatures and it can be concluded that in there was no
variation in bending stiffness as the curvature was increased. The same observation was made with the experiments.

The viscoelastic properties of the epoxy was integrated into the unidirectional tow model to obtain the viscoelastic
characterization of the tows. Since the fiber behavior dominates the behavior of the tows in the longitudinal direction,
C11 of relaxation modulus tensor was observed to have very small relaxation over time. Since the other terms describing
the properties in the transverse direction and shear has the involvement of the matrix to a considerable amount, they
show relaxation over time. This model was used to describe the viscoelastic tow of the laminate model and obtain the
relaxation ABD matrix. Analyses were carried out for the 4-ply plain weave laminate for two different orientations 0°
and 45°. The ABD relaxation matrix was formulated for both the scenarios. The coefficients relating to twist are yet to
be performed on the laminate models. The future work will continue in performing relaxation tests on the laminates in
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the study and the numerical model will be validated and optimized in comparison with test results.

A. Appendix

Table A.1 Relaxation times and Prony coefficients of PMT-F7.

i ρk [s] Ei [MPa]
∞ – 149.5
1 1.89E+01 74.75
2 1.00E+02 194.35
3 1.00E+03 254.15
4 2.00E+04 110.63
5 1.00E+05 158.47
6 1.95E+06 92.69
7 1.77E+07 71.76
8 1.74E+08 299
9 1.38E+09 299
10 1.00E+10 299
11 1.00E+11 299
12 1.00E+12 299
13 1.00E+13 299
14 1.00E+14 89.7

Table A.2 Relaxation times and Prony coefficients of unidirectional tow model.

k ρk C11,k C21,k C22,k C23,k C44,k C55,k

∞ – 183114.7 374.9 1131.8 269.4 135.3 207.2
1 1.89E+01 142.3 163.8 406.8 188.8 98.6 113.5
2 1.00E+02 209.0 241.5 600.8 277.2 140.0 161.8
3 1.00E+03 232.7 274.8 705.6 306.9 163.8 195.6
4 2.00E+04 138.0 163.2 414.1 180.5 95.6 114.0
5 1.00E+05 173.1 206.2 544.7 228.4 122.2 148.9
6 1.95E+06 113.9 137.1 356.5 146.2 79.7 97.9
7 1.77E+07 80.2 95.9 248.6 105.3 56.5 68.6
8 1.74E+08 355.8 429.8 1143.9 460.2 251.4 312.4
9 1.38E+09 373.0 461.3 1262.1 469.5 266.9 343.0
10 1.00E+10 383.6 482.0 1370.9 471.0 276.7 368.8
11 1.00E+11 412.3 527.2 1533.9 474.6 297.9 407.9
12 1.00E+12 398.0 515.1 1586.2 452.2 291.9 415.8
13 1.00E+13 495.3 657.6 2084.7 462.9 358.8 532.0
14 1.00E+14 56.1 76.7 290.8 48.1 42.6 69.6
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Table A.3 Relaxation times and Prony coefficients of 0o 4-ply laminate.

k ρk A11,k A12,k A33,k D11,k D12,k

∞ – 13813.33 141.15 40.81 59.75 0.18
1 1.89E+01 58.73 23.05 26.52 4.44E-01 7.32E-02
2 1.00E+02 67.70 26.52 31.13 5.11E-01 8.74E-02
3 1.00E+03 67.08 25.35 29.92 4.98E-01 8.43E-02
4 2.00E+04 50.51 19.47 22.20 3.71E-01 6.29E-02
5 1.00E+05 61.04 22.71 26.71 4.50E-01 7.50E-02
6 1.95E+06 40.56 15.52 17.84 3.00E-01 5.12E-02
7 1.77E+07 30.66 10.79 12.55 2.16E-01 3.55E-02
8 1.74E+08 126.69 48.48 56.50 9.49E-01 1.61E-01
9 1.38E+09 162.71 53.41 61.27 1.09E+00 1.78E-01
10 1.00E+10 142.36 54.75 64.74 1.11E+00 1.90E-01
11 1.00E+11 266.38 63.84 71.64 1.49E+00 2.18E-01
12 1.00E+12 89.68 53.84 70.34 1.12E+00 2.13E-01
13 1.00E+13 742.11 82.84 88.78 2.84E+00 2.44E-01
14 1.00E+14 389.43 14.71 4.94 9.28E-01 1.47E-02

Table A.4 Relaxation times and Prony coefficients of 45o rotated 4-ply laminate.

k ρk A11,k A12,k A33,k D11,k D12,k

∞ – 9767.50 99.81 6552.30 29.62 27.28
1 1.89E+01 41.53 16.30 19.70 4.79E-01 3.57E-02
2 1.00E+02 47.87 18.76 23.45 5.45E-01 5.42E-02
3 1.00E+03 47.43 17.92 24.66 5.37E-01 5.59E-02
4 2.00E+04 35.72 13.77 17.45 3.99E-01 3.87E-02
5 1.00E+05 43.16 16.06 22.78 4.81E-01 5.32E-02
6 1.95E+06 28.68 10.98 14.77 3.22E-01 3.45E-02
7 1.77E+07 21.68 7.63 11.42 2.30E-01 2.88E-02
8 1.74E+08 89.58 34.28 47.01 1.01E+00 1.08E-01
9 1.38E+09 115.05 37.76 65.32 1.16E+00 1.86E-01
10 1.00E+10 100.66 38.71 59.37 1.17E+00 1.47E-01
11 1.00E+11 188.36 45.14 123.40 1.54E+00 4.36E-01
12 1.00E+12 63.42 38.07 53.90 1.18E+00 9.79E-02
13 1.00E+13 524.75 58.58 417.85 2.88E+00 1.68E+00
14 1.00E+14 275.37 10.41 185.71 7.12E-01 6.37E-01
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