40 research outputs found

    Renormalization Group Approach to Einstein Equation in Cosmology

    Get PDF
    The renormalization group method has been adapted to the analysis of the long-time behavior of non-linear partial differential equation and has demonstrated its power in the study of critical phenomena of gravitational collapse. In the present work we apply the renormalization group to the Einstein equation in cosmology and carry out detailed analysis of renormalization group flow in the vicinity of the scale invariant fixed point in the spherically symmetric and inhomogeneous dust filled universe model.Comment: 16 pages including 2 eps figures, RevTe

    Treatment patterns associated with Duloxetine and Venlafaxine use for Major Depressive Disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duloxetine and venlafaxine extended release (venlafaxine XR) are SNRIs indicated for the treatment of MDD. This study addresses whether duloxetine and venlafaxine XR are interchangeable in their patterns of use with patients who are depressed or are used more selectively based on treatment history, background characteristics, and presenting symptoms.</p> <p>Methods</p> <p>This was a retrospective analysis of an administrative insurance claims database. We studied patients in managed care with major depressive disorder (MDD) treated with duloxetine or venlafaxine XR. Predictors of treatment and cost were assessed using Chi-square and logistic regression analyses of demographics and past-year medication use and comorbidities.</p> <p>Results</p> <p>Patients with MDD treated with duloxetine (n = 9,641) versus venlafaxine XR (n = 8,514) tended to be older, slightly more likely to be female, and treated by a psychiatrist (<it>P </it>< 0.0001). In the prior year, more duloxetine patients (vs. venlafaxine XR) received ≄3 unique antidepressants (20.8% vs. 16.6%), ≄3 unique pain medications (25.5% vs. 15.6%), and had ≄8 unique diagnosed comorbid medical and psychiatric conditions (38.6% vs. 29.1%). The prior 6-month total health care costs were $1,731 higher for duloxetine than for venlafaxine XR and declined for both medications in the 6 months after treatment began. Logistic regression analysis revealed that 61% of duloxetine patients and 61% of venlafaxine XR patients were predictable from prior patient and treatment factors.</p> <p>Conclusions</p> <p>Patients with MDD treated with duloxetine tended to have a more complex and costly antecedent clinical presentation compared with venlafaxine XR patients, suggesting that physicians do not use the medications interchangeably.</p

    Stochastic Gravity: A Primer with Applications

    Get PDF
    Stochastic semiclassical gravity of the 90's is a theory naturally evolved from semiclassical gravity of the 70's and 80's. It improves on the semiclassical Einstein equation with source given by the expectation value of the stress-energy tensor of quantum matter fields in curved spacetimes by incorporating an additional source due to their fluctuations. In stochastic semiclassical gravity the main object of interest is the noise kernel, the vacuum expectation value of the (operator-valued) stress-energy bi-tensor, and the centerpiece is the (stochastic) Einstein-Langevin equation. We describe this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh close-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise and decoherence. We then describe the application of stochastic gravity to the backreaction problems in cosmology and black hole physics. Intended as a first introduction to this subject, this article places more emphasis on pedagogy than completeness.Comment: 46 pages Latex. Intended as a review in {\it Classical and Quantum Gravity

    Maternal depression is associated with DNA methylation changes in cord blood T lymphocytes and adult hippocampi

    Get PDF
    Depression affects 10-15% of pregnant women and has been associated with preterm delivery and later developmental, behavioural and learning disabilities. We tested the hypothesis that maternal depression is associated with DNA methylation alterations in maternal T lymphocytes, neonatal cord blood T lymphocytes and adult offspring hippocampi. Genome-wide DNA methylation of CD3+ T lymphocytes isolated from 38 antepartum maternal and 44 neonatal cord blood samples were analyzed using Illumina Methylation 450 K microarrays. Previously obtained methylation data sets using methylated DNA immunoprecipitation and array-hybridization of 62 postmortem hippocampal samples of adult males were re-analyzed to test associations with history of maternal depression. We found 145 (false discovery rate (FDR) q<0.05) and 2520 (FDR q<0.1) differentially methylated CG-sites in cord blood T lymphocytes of neonates from the maternal depression group as compared with the control group. However, no significant DNA methylation differences were detected in the antepartum maternal T lymphocytes of our preliminary data set. We also detected 294 differentially methylated probes (FDR q<0.1) in hippocampal samples associated with history of maternal depression. We observed a significant overlap (P=0.002) of 33 genes with changes in DNA methylation in T lymphocytes of neonates and brains of adult offspring. Many of these genes are involved in immune system functions. Our results show that DNA methylation changes in offspring associated with maternal depression are detectable at birth in the immune system and persist to adulthood in the brain. This is consistent with the hypothesis that system-wide epigenetic changes are involved in life-long responses to maternal depression in the offspring. © 2015 Translational Psychiatry

    All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx

    No full text
    Integrated optical circuits based on silicon-on-insulator technology are likely to become the mainstay of the photonics industry. Over recent years an impressive range of silicon-on-insulator devices has been realized, including waveguides(1,2), filters(3,4) and photonic-crystal devices(5). However, silicon-based all-optical switching is still challenging owing to the slow dynamics of two-photon generated free carriers. Here we show that silicon-organic hybrid integration overcomes such intrinsic limitations by combining the best of two worlds, using mature CMOS processing to fabricate the waveguide, and molecular beam deposition to cover it with organic molecules that efficiently mediate all-optical interaction without introducing significant absorption. We fabricate a 4-mm-long silicon-organic hybrid waveguide with a record nonlinearity coefficient of gamma approximate to 1 x 10(5) W-1 km(-1) and perform all-optical demultiplexing of 170.8 Gb s(-1) to 42.7 Gb s(-1). This is-to the best of our knowledge-the fastest silicon photonic optical signal processing demonstrated
    corecore