4 research outputs found

    Metal solution precursors: their role during the synthesis of MoVTeNb mixed oxide catalysts

    Full text link
    [EN] Synthesized via the slurry method and activated at high temperature (873 K), MoVTeNb multimetallic mixed oxides are applied to catalyze the oxidative dehydrogenation of ethane to ethylene (ODHE). Mixed oxides typically contain M1 and M2 crystalline phases, the relative contribution of these phases and the respective catalytic behaviour being notably influenced by the preparation conditions of the metallic aqueous solution precursor, given the complexity of the chemical interactions of metal species in solution. Thus, detailed in situ UV-vis and Raman studies of the chemical species formed in solution during each step of the synthetic procedure are presented herein. The main role of vanadium is to form decavanadate ions, which interact with Mo species to generate an Anderson-type structure. When niobium oxalate solution is added into the MoVTe solution, a yellow-coloured gel is immediately formed due to a common ion effect. When liquid and gel phases are separated, the M1 crystalline phase is produced solely from the gel phase. Attention is also devoted to the influence and role of each metal cation (Mo, V, Te and Nb) on the formation of the active M1 crystalline phase and the catalytic behaviour in the ODHE. The catalyst constituted mostly of M1 crystalline phase is able to convert 45% of the fed ethane, with a selectivity to ethylene of around 90%.This work was financially supported by the Instituto Mexicano del Petroleo (IMP) Project D.61010. EMF thanks CONACyT Mexico and IMP. JMLN thanks DGICYT in Spain (Project CTQ2015-68951-C3-1-R).Sánchez-Valente, J.; Maya-Flores, E.; Armendariz-Herrera, H.; Quintana-Solorzano, R.; López Nieto, JM. (2018). Metal solution precursors: their role during the synthesis of MoVTeNb mixed oxide catalysts. Catalysis Science & Technology. 8(12):3123-3132. https://doi.org/10.1039/c8cy00750kS31233132812Ushikubo, T., Oshima, K., Kayou, A., Vaarkamp, M., & Hatano, M. (1997). Ammoxidation of Propane over Catalysts Comprising Mixed Oxides of Mo and V. Journal of Catalysis, 169(1), 394-396. doi:10.1006/jcat.1997.1692Ushikubo, T., Oshima, K., Kayou, A., & Hatano, M. (1997). Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts. Spillover and Migration of Surface Species on Catalysts, Proceedings of the 4th International Conference on Spillover, 473-480. doi:10.1016/s0167-2991(97)80871-3Ushikubo, T. (2000). Recent topics of research and development of catalysis by niobium and tantalum oxides. Catalysis Today, 57(3-4), 331-338. doi:10.1016/s0920-5861(99)00344-2Ueda, W., & Oshihara, K. (2000). Selective oxidation of light alkanes over hydrothermally synthesized Mo-V-M-O (M=Al, Ga, Bi, Sb, and Te) oxide catalysts. Applied Catalysis A: General, 200(1-2), 135-143. doi:10.1016/s0926-860x(00)00627-xWatanabe, H., & Koyasu, Y. (2000). New synthesis route for Mo–V–Nb–Te mixed oxides catalyst for propane ammoxidation. Applied Catalysis A: General, 194-195, 479-485. doi:10.1016/s0926-860x(99)00394-4Botella, P., Solsona, B., Martinez-Arias, A., & López Nieto, J. M. (2001). Catalysis Letters, 74(3/4), 149-154. doi:10.1023/a:1016614132694Oshihara, K., Hisano, T., & Ueda, W. (2001). Topics in Catalysis, 15(2/4), 153-160. doi:10.1023/a:1016630307377Botella, P., López Nieto, J. M., Solsona, B., Mifsud, A., & Márquez, F. (2002). The Preparation, Characterization, and Catalytic Behavior of MoVTeNbO Catalysts Prepared by Hydrothermal Synthesis. Journal of Catalysis, 209(2), 445-455. doi:10.1006/jcat.2002.3648Millet, J. M. M., Roussel, H., Pigamo, A., Dubois, J. L., & Jumas, J. C. (2002). Characterization of tellurium in MoVTeNbO catalysts for propane oxidation or ammoxidation. Applied Catalysis A: General, 232(1-2), 77-92. doi:10.1016/s0926-860x(02)00078-9DeSanto Jr., P., Buttrey, D. J., Grasselli, R. K., Lugmair, C. G., Volpe, A. F., Toby, B. H., & Vogt, T. (2003). Topics in Catalysis, 23(1/4), 23-38. doi:10.1023/a:1024812101856Millet, J. M. ., Baca, M., Pigamo, A., Vitry, D., Ueda, W., & Dubois, J. . (2003). Study of the valence state and coordination of antimony in MoVSbO catalysts determined by XANES and EXAFS. Applied Catalysis A: General, 244(2), 359-370. doi:10.1016/s0926-860x(02)00614-2BOTELLA, P. (2004). Selective oxidative dehydrogenation of ethane on MoVTeNbO mixed metal oxide catalysts. Journal of Catalysis, 225(2), 428-438. doi:10.1016/j.jcat.2004.04.024Holmberg, J., Grasselli, R. K., & Andersson, A. (2004). Catalytic behaviour of M1, M2, and M1/M2 physical mixtures of the Mo–V–Nb–Te–oxide system in propane and propene ammoxidation. Applied Catalysis A: General, 270(1-2), 121-134. doi:10.1016/j.apcata.2004.04.029Grasselli, R. K., Buttrey, D. J., DeSanto, P., Burrington, J. D., Lugmair, C. G., Volpe, A. F., & Weingand, T. (2004). Active centers in Mo–V–Nb–Te–O (amm)oxidation catalysts. Catalysis Today, 91-92, 251-258. doi:10.1016/j.cattod.2004.03.060Ueda, W., Vitry, D., & Katou, T. (2005). Crystalline MoVO based complex oxides as selective oxidation catalysts of propane. Catalysis Today, 99(1-2), 43-49. doi:10.1016/j.cattod.2004.09.022Murayama, H., Vitry, D., Ueda, W., Fuchs, G., Anne, M., & Dubois, J. L. (2007). Structure characterization of orthorhombic phase in MoVTeNbO catalyst by powder X-ray diffraction and XANES. Applied Catalysis A: General, 318, 137-142. doi:10.1016/j.apcata.2006.10.050Guliants, V. V., Bhandari, R., Swaminathan, B., Vasudevan, V. K., Brongersma, H. H., Knoester, A., … Han, S. (2005). Roles of Surface Te, Nb, and Sb Oxides in Propane Oxidation to Acrylic Acid over Bulk Orthorhombic Mo−V−O Phase. The Journal of Physical Chemistry B, 109(50), 24046-24055. doi:10.1021/jp054641yGrasselli, R. K., Buttrey, D. J., Burrington, J. D., Andersson, A., Holmberg, J., Ueda, W., … Volpe, A. F. (2006). Active centers, catalytic behavior, symbiosis and redox properties of MoV(Nb,Ta)TeO ammoxidation catalysts. Topics in Catalysis, 38(1-3), 7-16. doi:10.1007/s11244-006-0066-xSafonova, O. V., Deniau, B., & Millet, J.-M. M. (2006). Mechanism of the Oxidation−Reduction of the MoVSbNbO Catalyst:  In Operando X-ray Absorption Spectroscopy and Electrical Conductivity Measurements. The Journal of Physical Chemistry B, 110(47), 23962-23967. doi:10.1021/jp064347lWagner, J. B., Timpe, O., Hamid, F. A., Trunschke, A., Wild, U., Su, D. S., … Schlögl, R. (2006). Surface texturing of Mo–V–Te–Nb–O x selective oxidation catalysts. Topics in Catalysis, 38(1-3), 51-58. doi:10.1007/s11244-006-0070-1Kolen’ko, Y. V., Zhang, W., d’ Alnoncourt, R. N., Girgsdies, F., Hansen, T. W., Wolfram, T., … Trunschke, A. (2011). Synthesis of MoVTeNb Oxide Catalysts with Tunable Particle Dimensions. ChemCatChem, 3(10), 1597-1606. doi:10.1002/cctc.201100089Hävecker, M., Wrabetz, S., Kröhnert, J., Csepei, L.-I., Naumann d’Alnoncourt, R., Kolen’ko, Y. V., … Trunschke, A. (2012). Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid. Journal of Catalysis, 285(1), 48-60. doi:10.1016/j.jcat.2011.09.012Ishikawa, S., Tashiro, M., Murayama, T., & Ueda, W. (2014). Seed-Assisted Synthesis of Crystalline Mo3VOx Oxides and Their Crystal Formation Mechanism. Crystal Growth & Design, 14(9), 4553-4561. doi:10.1021/cg500661pNieto, J. M. L., Botella, P., Vázquez, M. I., & Dejoz, A. (2002). The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chem. Commun., (17), 1906-1907. doi:10.1039/b204037aLópez Nieto, J. ., Botella, P., Concepción, P., Dejoz, A., & Vázquez, M. . (2004). Oxidative dehydrogenation of ethane on Te-containing MoVNbO catalysts. Catalysis Today, 91-92, 241-245. doi:10.1016/j.cattod.2004.03.040Ivars, F., Botella, P., Dejoz, A., Nieto, J. M. L., Concepción, P., & Vázquez, M. I. (2006). Selective oxidation of short-chain alkanes over hydrothermally prepared MoVTeNbO catalysts. Topics in Catalysis, 38(1-3), 59-67. doi:10.1007/s11244-006-0071-0Botella, P., Dejoz, A., Abello, M. C., Vázquez, M. I., Arrúa, L., & López Nieto, J. M. (2009). Selective oxidation of ethane: Developing an orthorhombic phase in Mo–V–X (X=Nb, Sb, Te) mixed oxides. Catalysis Today, 142(3-4), 272-277. doi:10.1016/j.cattod.2008.09.016Deniau, B., Millet, J. M. M., Loridant, S., Christin, N., & Dubois, J. L. (2008). Effect of several cationic substitutions in the M1 active phase of the MoVTeNbO catalysts used for the oxidation of propane to acrylic acid. Journal of Catalysis, 260(1), 30-36. doi:10.1016/j.jcat.2008.08.020SOLSONA, B., VAZQUEZ, M., IVARS, F., DEJOZ, A., CONCEPCION, P., & LOPEZNIETO, J. (2007). Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 252(2), 271-280. doi:10.1016/j.jcat.2007.09.019Nguyen, T. T., Burel, L., Nguyen, D. L., Pham-Huu, C., & Millet, J. M. M. (2012). Catalytic performance of MoVTeNbO catalyst supported on SiC foam in oxidative dehydrogenation of ethane and ammoxidation of propane. Applied Catalysis A: General, 433-434, 41-48. doi:10.1016/j.apcata.2012.04.038Nguyen, T. T., Aouine, M., & Millet, J. M. M. (2012). Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene. Catalysis Communications, 21, 22-26. doi:10.1016/j.catcom.2012.01.026Valente, J. S., Armendáriz-Herrera, H., Quintana-Solórzano, R., del Ángel, P., Nava, N., Massó, A., & López Nieto, J. M. (2014). Chemical, Structural, and Morphological Changes of a MoVTeNb Catalyst during Oxidative Dehydrogenation of Ethane. ACS Catalysis, 4(5), 1292-1301. doi:10.1021/cs500143jTHORSTEINSON, E. (1978). The oxidative dehydrogenation of ethane over catalysts containing mixed oxides of molybdenum and vanadium. Journal of Catalysis, 52(1), 116-132. doi:10.1016/0021-9517(78)90128-8Ishikawa, S., Yi, X., Murayama, T., & Ueda, W. (2014). Heptagonal channel micropore of orthorhombic Mo3VOx as catalysis field for the selective oxidation of ethane. Applied Catalysis A: General, 474, 10-17. doi:10.1016/j.apcata.2013.07.050Ishikawa, S., Yi, X., Murayama, T., & Ueda, W. (2014). Catalysis field in orthorhombic Mo3VOx oxide catalyst for the selective oxidation of ethane, propane and acrolein. Catalysis Today, 238, 35-40. doi:10.1016/j.cattod.2013.12.054Grasselli, R. K., Burrington, J. D., Buttrey, D. J., DeSanto Jr., P., Lugmair, C. G., Volpe Jr., A. F., & Weingand, T. (2003). Topics in Catalysis, 23(1/4), 5-22. doi:10.1023/a:1024859917786Grasselli, R. K., Lugmair, C. G., Volpe Jr., A. F., Andersson, A., & Burrington, J. D. (2010). Enhancement of acrylic acid yields in propane and propylene oxidation by selective P Doping of MoV(Nb)TeO-based M1 and M2 catalysts. Catalysis Today, 157(1-4), 33-38. doi:10.1016/j.cattod.2010.01.044Grasselli, R. K., Lugmair, C. G., & Volpe, A. F. (2011). Towards an Understanding of the Reaction Pathways in Propane Ammoxidation Based on the Distribution of Elements at the Active Centers of the M1 Phase of the MoV(Nb,Ta)TeO System. Topics in Catalysis, 54(10-12), 595-604. doi:10.1007/s11244-011-9681-2Grasselli, R. K. (2014). Site isolation and phase cooperation: Two important concepts in selective oxidation catalysis: A retrospective. Catalysis Today, 238, 10-27. doi:10.1016/j.cattod.2014.05.036Ramli, I., Botella, P., Ivars, F., Pei Meng, W., Zawawi, S. M. M., Ahangar, H. A., … Nieto, J. M. L. (2011). Reflux method as a novel route for the synthesis of MoVTeNbOx catalysts for selective oxidation of propane to acrylic acid. Journal of Molecular Catalysis A: Chemical, 342-343, 50-57. doi:10.1016/j.molcata.2011.04.009Naraschewski, F. N., Praveen Kumar, C., Jentys, A., & Lercher, J. A. (2011). Phase formation and selective oxidation of propane over MoVTeNbOx catalysts with varying compositions. Applied Catalysis A: General, 391(1-2), 63-69. doi:10.1016/j.apcata.2010.07.005Blasco, T., Botella, P., Concepción, P., López Nieto, J. M., Martinez-Arias, A., & Prieto, C. (2004). Selective oxidation of propane to acrylic acid on K-doped MoVSbO catalysts: catalyst characterization and catalytic performance. Journal of Catalysis, 228(2), 362-373. doi:10.1016/j.jcat.2004.08.036YANG, X., FENG, R., JI, W., & AU, C. (2008). Characterization and evaluation of MoVTeNb mixed metal oxide catalysts fabricated via hydrothermal process with ultrasonic pretreatment for propane partial oxidation. Journal of Catalysis, 253(1), 57-65. doi:10.1016/j.jcat.2007.10.020GAFFNEY, A., CHATURVEDI, S., CLARKJR, M., HAN, S., LE, D., RYKOV, S., & CHEN, J. (2005). Characterization and catalytic studies of PVD synthesized Mo/V/Nb/Te oxide catalysts. Journal of Catalysis, 229(1), 12-23. doi:10.1016/j.jcat.2004.09.013Espinal, L., Malinger, K. A., Espinal, A. E., Gaffney, A. M., & Suib, S. L. (2007). Preparation of Multicomponent Metal Oxides Using Nozzle Spray and Microwaves. Advanced Functional Materials, 17(14), 2572-2579. doi:10.1002/adfm.200600744Kolen’ko, Y. V., Amakawa, K., d’ Alnoncourt, R. N., Girgsdies, F., Weinberg, G., Schlögl, R., & Trunschke, A. (2012). Unusual Phase Evolution in MoVTeNb Oxide Catalysts Prepared by a Novel Acrylamide-Gelation Route. ChemCatChem, 4(4), 495-503. doi:10.1002/cctc.201100451Concepción, P., Hernández, S., & Nieto, J. M. L. (2011). On the nature of active sites in MoVTeO and MoVTeNbO catalysts: The influence of catalyst activation temperature. Applied Catalysis A: General, 391(1-2), 92-101. doi:10.1016/j.apcata.2010.05.011Botella, P., García-González, E., López Nieto, J. M., & González-Calbet, J. M. (2005). MoVTeNbO multifunctional catalysts: Correlation between constituent crystalline phases and catalytic performance. Solid State Sciences, 7(5), 507-519. doi:10.1016/j.solidstatesciences.2005.01.012Beato, P., Blume, A., Girgsdies, F., Jentoft, R. E., Schlögl, R., Timpe, O., … Mohd Salim, L. (2006). Analysis of structural transformations during the synthesis of a MoVTeNb mixed oxide catalyst. Applied Catalysis A: General, 307(1), 137-147. doi:10.1016/j.apcata.2006.03.014Celaya Sanfiz, A., Hansen, T. W., Girgsdies, F., Timpe, O., Rödel, E., Ressler, T., … Schlögl, R. (2008). Preparation of Phase-Pure M1 MoVTeNb Oxide Catalysts by Hydrothermal Synthesis—Influence of Reaction Parameters on Structure and Morphology. Topics in Catalysis, 50(1-4), 19-32. doi:10.1007/s11244-008-9106-zOzeki, T., Kihara, H., & Ikeda, S. (1988). Study of equilibria in 0.03 mM molybdate acidic aqueous solutions by factor analysis applied to ultraviolet spectra. Analytical Chemistry, 60(19), 2055-2059. doi:10.1021/ac00170a014Tytko, K.-H., & Schönfeld, B. (1975). Über Isopolymolybdatfeststoffe und deren Beziehung zu Isopolymolybdationen in wäßriger Lösung / Concerning Solid Isopolymolybdates and their Relation to Isopolymolybdate Ions in Aqueous Solution. Zeitschrift für Naturforschung B, 30(7-8), 471-484. doi:10.1515/znb-1975-7-801Müller, A., Krickemeyer, E., Bögge, H., Schmidtmann, M., & Peters, F. (1998). Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. Angewandte Chemie International Edition, 37(24), 3359-3363. doi:10.1002/(sici)1521-3773(19981231)37:243.0.co;2-jLivage, J. (2010). Hydrothermal Synthesis of Nanostructured Vanadium Oxides. Materials, 3(8), 4175-4195. doi:10.3390/ma3084175C. F. Baes Jr and R. E.Mesmer , in The Hydrolysis of Cations , Wiley N.Y. , 1970Tsuji, H., & Koyasu, Y. (2002). Synthesis of MoVNbTe(Sb)OxComposite Oxide Catalysts via Reduction of Polyoxometalates in an Aqueous Medium. Journal of the American Chemical Society, 124(20), 5608-5609. doi:10.1021/ja0122344Maksimovskaya, R. I., Bondareva, V. M., & Aleshina, G. I. (2008). NMR Spectroscopic Studies of Interactions in Solution during the Synthesis of MoVTeNb Oxide Catalysts. European Journal of Inorganic Chemistry, 2008(31), 4906-4914. doi:10.1002/ejic.200800500Griffith, W. P., & Lesniak, P. J. B. (1969). Raman studies on species in aqueous solutions. Part III. Vanadates, molybdates, and tungstates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1066. doi:10.1039/j19690001066Butler, I. S., El-Sherbeny, H. A. M., Kenawy, I. M., & Mostafa, S. I. (2013). Synthesis and spectroscopic characterization of complexes of Cr(III), Cr(VI), Cu(III), Zn(II), Mo(VI), Pd(II), Ag(III), Au(III) and W(VI) with telluric acid. Journal of Molecular Structure, 1036, 510-520. doi:10.1016/j.molstruc.2012.11.017Müller, A., Kögerler, P., & Dress, A. W. M. (2001). Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems. Coordination Chemistry Reviews, 222(1), 193-218. doi:10.1016/s0010-8545(01)00391-5Botto, I. L., Cabello, C. I., & Thomas, H. J. (1997). (NH4)6[TeMo6O24]·7H2O Anderson phase as precursor of the TeMo5O16 catalytic phase: thermal and spectroscopic studies. Materials Chemistry and Physics, 47(1), 37-45. doi:10.1016/s0254-0584(97)80025-9Sun, Y., Liu, J., & Wang, E. (1986). Preparation and properties of some new 6-heteropoly-tellurate compounds of tungsten and molybdenum containing vanadium. Inorganica Chimica Acta, 117(1), 23-26. doi:10.1016/s0020-1693(00)88061-5Yoshida, H., Tanaka, T., Yoshida, T., Funabiki, T., & Yoshida, S. (1996). Control of the structure of niobium oxide species on silica by the equilibrium adsorption method. Catalysis Today, 28(1-2), 79-89. doi:10.1016/0920-5861(95)00232-4Kubouchi, Y., Hayakawa, S., Namatame, H., & Hirokawa, T. (2012). Direct observation of fractional change of niobium ionic species in a solution by means of X-ray absorption fine structure spectroscopy. X-Ray Spectrometry, 41(4), 259-263. doi:10.1002/xrs.2390Prasetyoko, D., Ramli, Z., Endud, S., & Nur, H. (2005). Preparation and characterization of bifunctional oxidative and acidic catalysts Nb2O5/TS-1 for synthesis of diols. Materials Chemistry and Physics, 93(2-3), 443-449. doi:10.1016/j.matchemphys.2005.03.030Konya, T., Katou, T., Murayama, T., Ishikawa, S., Sadakane, M., Buttrey, D., & Ueda, W. (2013). An orthorhombic Mo3VOxcatalyst most active for oxidative dehydrogenation of ethane among related complex metal oxides. Catal. Sci. Technol., 3(2), 380-387. doi:10.1039/c2cy20444dOliver, J. (2004). The effect of pH on structural and catalytic properties of MoVTeNbO catalysts. Applied Catalysis A: General, 257(1), 67-76. doi:10.1016/s0926-860x(03)00632-

    Synthesis, spectroscopy and characterization of titanium dioxide based photocatalysts for the degradative oxidation of organic pollutants

    Get PDF
    Tese de doutoramento. Engenharia Química e Biológica. Faculdade de Engenharia. Universidade do Porto. 20

    Synthesizing Efficient Quasi-one-dimension Titanium Dioxide Nanocatalyst for Enhanced Photocatalytic Degradation of Aqueous Organic Pollutants and Hydrogen Production

    Get PDF
    This dissertation is focused on synthesizing Q1D TiO2-based nanocatalysts for degrading aqueous organic pollutants and producing H2. A facile alkaline hydrothermal process was used to synthesize Q1D TiO2 under different hydrothermal synthesis factors (reaction temperature, NaOH concentration and TiO2 precursor concentration). The hydrothermal synthesis factors significantly affected the Q1D TiO2 phase structure, crystal size, specific surface area (SSA), bandgap, photocatalytic activities. A Box-Behnken design (BBD) model was used to optimize the hydrothermal factors for synthesizing Q1D TiO2 with maximum photodegradation rate and H2 production rate. The optimized Q1D TiO2 with maximum photodegradation rate was further enhanced with partially reduced graphene oxide (RGO) (designated as GT) for degrading aqueous hazardous pollutants. The study also examined the impact of the RGO atomic oxygen-to-carbon (O/C) ratio on GT photocatalytic activities. The highest photocatalytic activity was observed when the RGO atomic O/C ratio was 0.130±0.003. Next, the GT photocatalyst was enhanced with Ag NPs (designated as Ag-GT). The highest photocatalytic activity was observed for a silver content of 10 wt% in the photocatalyst film. Finally, an atmospheric pressure plasma jet (APPJ) was employed to synthesize micrometer thick Ag nanoparticles modified TiO2 (Ag-TiO2) coatings, presenting a core-shell structure for degrading RhB and trace pharmaceutical compounds using a solar light source. The Ag-TiO2 coatings were characterized having a porous anatase phase, improved charge separation and visible light absorption. The highest photodegradation rate was observed for a silver content of 0.4wt% in the composite. Cette thèse porte sur la synthèse des nanocatalyseur à base de TiO2 Q1D (quasi-unidimensionnel) pour dégrader des polluants organiques aqueux et pour produire de l’hydrogène. Un processus hydrothermal alcalin simple a été utilisé pour synthétiser TiO2 Q1D avec des paramètres de synthèse différents (la température, la concentration de NaOH de précurseur TiO2). Ces paramètres affectent la structure de phase de TiO2 Q1D, la taille du cristal, la surface spécifique (SS), l\u27énergie du gap et les activités photocatalytiques qui en résultent. Le modèle Boîte-Behnken (BBD) est utilisé pour optimiser les paramètres hydrothermaux permettant d’obtenir un taux de photodégradation maximal des polluants étudiés, et un taux de production d’H2 maximal. Le TiO2 Q1D optimisé a été davantage amélioré à l’aide d’oxyde de gràphène partiellement réduit (RGO) pour obtenir le catalyseur désigné GT. L’impact du rapport atomique O/C du RGO sur l’activité catalytique du GT est étudié. La valeur maximale d’activité photocatalytique est obtenu pour O/C =0.130±0.003. Puis, le GT est amélioré avec les NP d’Ag (Ag-GT). L’activité maximale est obtenue pour 10%d’Ag. Enfin un jet plasma atmosphérique (APPJ) a été employé pour synthétiser des couches minces nanométriques de TiO2 avec inclusion des NP d’Ag de structure cœur-coquille pour la dégradation du colorant RhB et des différents des produits pharmaceutiques à l’aide d’un simulateur solaire. Les couches composites minces (Ag-TiO2) sont très poreuses de phase anatase avec une absorption dans le visible et une amélioration de la séparation des charges. La valeur maximale de la photo-dégradation a été obtenue pour 0.4% d’Ag dans la couche composite

    Multifunctionality of crystalline MoV(TeNb) M1 oxide catalysts in selective oxidation of propane and benzyl alcohol

    No full text
    Propane oxidation at 653-673 K and benzyl alcohol oxidation at 393 K over phase-pure MoV(TeNb) M1 oxide catalysts were studied to gain insight into the multiple catalytic functions of the surface of the M1 structure. Electron microscopy and X-ray diffraction confirmed the phase purity of the M1 catalysts. Propane oxidation yields acrylic acid via propene as intermediate, while benzyl alcohol oxidation gives benzaldehyde, benzoic acid, benzyl benzoate, and toluene. The consumption rates of benzyl alcohol and propane level in the same range despite huge difference in reaction temperature, suggesting high activity of M1 for alcohol oxidation. Metal-oxygen sites on the M1 surface are responsible for the conversion of the two reactants. However, different types of active sites and reaction mechanisms may be involved. Omitting Te and Nb from the M1 framework eliminates acrylic acid selectivity in propane oxidation, while the product distribution in benzyl alcohol oxidation remains unchanged. The results suggest that the surface of M1 possesses several types of active sites that likely perform a complex interplay under the harsh propane oxidation condition. Possible reaction pathways and mechanisms are discussed
    corecore