313 research outputs found

    Anaerobic Digestion Of Mixed Chemical Pulping And Palm Oil Mill Effluent In Suspended Growth Anaerobic Digester.

    Get PDF
    The feasibility of anaerobic digestion treating palm oil mill effluent (POME) with addition of chemical pulping wastewater (black liquor) was studied in semi-continuous fed digesters under thermophilic (55°C) condition. The anaerobic digestibility of POME with and without addition of black liquor (2.5% and 5% by volume) was compared. Black liquor is an effluent obtained from pulping processes and it has high toxicity level and poor biodegradability. The digesters contained POME without black liquor functioned as a control in this study. The chemical oxygen demand (COD) reduction for hydraulic retention time (HRT) of 5 days and 10 days were examined to evaluate the effect of HRT on the performance of the digesters. The results depicted that COD reduction could be achieved up to 87% in the digester without black liquor and 79% reduction in COD with black liquor added. Fourier Transform Infrared (FTIR) spectroscopy was used to identify the functional group of POME operated under thermophilic temperatures and with or without addition of black liquor. Differences in the functional group were depicted within ten days HRT for both conditions. The results of this work could be used as a basis to enhance the possibility of anaerobic digestion in treating the chemical pulping wastewater which is initially known difficult to degrade biologically

    Multiple Controls Regulate Nucleostemin Partitioning Between Nucleolus and Nucleoplasm

    Get PDF
    Nucleostemin plays an essential role in maintaining the continuous proliferation of stem cells and cancer cells. The movement of nucleostemin between the nucleolus and the nucleoplasm provides a dynamic way to partition the nucleostemin protein between these two compartments. Here, we showed that nucleostemin contained two nucleolus-targeting regions, the basic and the GTP-binding domains, which exhibited a short and a long nucleolar retention time, respectively. In a GTP-unbound state, the nucleolus-targeting activity of nucleostemin was blocked by a mechanism that trapped its intermediate domain in the nucleoplasm. A nucleostemin-interacting protein, RSL1D1, was identified that contained a ribosomal L1-domain, co-resided with nucleostemin in the same subnucleolar compartment non-identical to the B23 and fibrillarin distributions, and displayed a longer nucleolar residence time than nucleostemin. RSL1D1 interacted with both the basic and the GTP-binding domains of nucleostemin through a non-nucleolus-targeting region. Overexpression of the nucleolus-targeting domain of RSL1D1 alone dispersed the nucleolar nucleostemin. Loss of RSL1D1 expression reduced the compartmental size and amount of nucleostemin in the nucleolus. This work reveals that the partitioning of nucleostemin employs complex mechanisms involving both nucleolar and nucleoplasmic components, and provides insight into the post-translational regulation of its activity

    Theoretical study of the two-proton halo candidate 17^{17}Ne including contributions from resonant continuum and pairing correlations

    Full text link
    With the relativistic Coulomb wave function boundary condition, the energies, widths and wave functions of the single proton resonant orbitals for 17^{17}Ne are studied by the analytical continuation of the coupling constant (ACCC) approach within the framework of the relativistic mean field (RMF) theory. Pairing correlations and contributions from the single-particle resonant orbitals in the continuum are taken into consideration by the resonant Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is used. It can be seen that the fully self-consistent calculations with NL3 and NLSH effective interactions mostly agree with the latest experimental measurements, such as binding energies, matter radii, charge radii and densities. The energy of π\pi2s1/2_{1/2} orbital is slightly higher than that of π1d5/2\pi1d_{5/2} orbital, and the occupation probability of the (π(\pi2s1/2)2_{1/2})^2 orbital is about 20%, which are in accordance with the shell model calculation and three-body model estimation

    Magnetic Reversal on Vicinal Surfaces

    Full text link
    We present a theoretical study of in-plane magnetization reversal for vicinal ultrathin films using a one-dimensional micromagnetic model with nearest-neighbor exchange, four-fold anisotropy at all sites, and two-fold anisotropy at step edges. A detailed "phase diagram" is presented that catalogs the possible shapes of hysteresis loops and reversal mechanisms as a function of step anisotropy strength and vicinal terrace length. The steps generically nucleate magnetization reversal and pin the motion of domain walls. No sharp transition separates the cases of reversal by coherent rotation and reversal by depinning of a ninety degree domain wall from the steps. Comparison to experiment is made when appropriate.Comment: 12 pages, 8 figure

    GNL3L stabilizes the TRF1 complex and promotes mitotic transition

    Get PDF
    Telomeric repeat binding factor 1 (TRF1) is a component of the multiprotein complex “shelterin,” which organizes the telomere into a high-order structure. TRF1 knockout embryos suffer from severe growth defects without apparent telomere dysfunction, suggesting an obligatory role for TRF1 in cell cycle control. To date, the mechanism regulating the mitotic increase in TRF1 protein expression and its function in mitosis remains unclear. Here, we identify guanine nucleotide-binding protein-like 3 (GNL3L), a GTP-binding protein most similar to nucleostemin, as a novel TRF1-interacting protein in vivo. GNL3L binds TRF1 in the nucleoplasm and is capable of promoting the homodimerization and telomeric association of TRF1, preventing promyelocytic leukemia body recruitment of telomere-bound TRF1, and stabilizing TRF1 protein by inhibiting its ubiquitylation and binding to FBX4, an E3 ubiquitin ligase for TRF1. Most importantly, the TRF1 protein-stabilizing activity of GNL3L mediates the mitotic increase of TRF1 protein and promotes the metaphase-to-anaphase transition. This work reveals novel aspects of TRF1 modulation by GNL3L

    In search of nonribosomal nucleolar protein function and regulation

    Get PDF
    The life of the nucleolus has proven to be more colorful and multifaceted than had been envisioned a decade ago. A large number of proteins found in this subnuclear compartment have no identifiable tie either to the ribosome biosynthetic pathway or to the other newly established activities occurring within the nucleolus. The questions of how and why these proteins end up in this subnuclear compartment remain unanswered and are the focus of intense current interest. This review discusses our thoughts on the discovery of nonribosomal proteins in the nucleolus

    Nucleostemin prevents telomere damage by promoting PML-IV recruitment to SUMOylated TRF1

    Get PDF
    Continuously dividing cells must be protected from telomeric and nontelomeric DNA damage in order to maintain their proliferative potential. Here, we report a novel telomere-protecting mechanism regulated by nucleostemin (NS). NS depletion increased the number of telomere damage foci in both telomerase-active (TA(+)) and alternative lengthening of telomere (ALT) cells and decreased the percentage of damaged telomeres associated with ALT-associated PML bodies (APB) and the number of APB in ALT cells. Mechanistically, NS could promote the recruitment of PML-IV to SUMOylated TRF1 in TA(+) and ALT cells. This event was stimulated by DNA damage. Supporting the importance of NS and PML-IV in telomere protection, we demonstrate that loss of NS or PML-IV increased the frequency of telomere damage and aberration, reduced telomeric length, and perturbed the TRF2(ΔBΔM)-induced telomeric recruitment of RAD51. Conversely, overexpression of either NS or PML-IV protected ALT and TA(+) cells from telomere damage. This work reveals a novel mechanism in telomere protection

    The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine

    Get PDF
    It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine

    A multi-center study on the attitudes of Malaysian emergency health care staff towards allowing family presence during resuscitation of adult patients

    Get PDF
    BACKGROUND The practice of allowing family members to witness on-going active resuscitation has been gaining ground in many developed countries since it was first introduced in the early 1990s. In many Asian countries, the acceptability of this practice has not been well studied. AIM We conducted a multi-center questionnaire study to determine the attitudes of health care professionals in Malaysia towards family presence to witness ongoing medical procedures during resuscitation. METHODS Using a bilingual questionnaire (in Malay and English language), we asked our respondents about their attitudes towards allowing family presence (FP) as well as their actual experience of requests from families to be allowed to witness resuscitations. Multiple logistic regression was used to analyze the association between the many variables and a positive attitude towards FP. RESULTS Out of 300 health care professionals who received forms, 270 responded (a 90% response rate). Generally only 15.8% of our respondents agreed to allow relatives to witness resuscitations, although more than twice the number (38.5%) agreed that relatives do have a right to be around during resuscitation. Health care providers are significantly more likely to allow FP if the procedures are perceived as likely to be successful (e.g., intravenous cannulation and blood taking as compared to chest tube insertion). Doctors were more than twice as likely as paramedics to agree to FP (p-value = 0.002). This is probably due to the Malaysian work culture in our health care systems in which paramedics usually adopt a 'follow-the-leader' attitude in their daily practice. CONCLUSION The concept of allowing FP is not well accepted among our Malaysian health care providers

    Prunella vulgaris: A comprehensive review of chemical constituents, pharmacological effects and clinical applications.

    Get PDF
    Prunella vulgaris (PV) is a perennial herb belonging to the Labiate family and is widely distributed in northeastern Asian countries such as Korea, Japan, and China. It is reported to display diverse biological activities including anti-microbial, anti-cancer, and anti-inflammation as determined by in vitro or in vivo studies. So far, about 200 compounds have been isolated from PV plant and majority of these have been characterized mainly as triterpenoids, sterols and flavonoids, followed by coumarins, phenylpropanoids, polysaccharides and volatile oils. This review summarizes and analyzes the current knowledge on the chemical constituents, pharmacological activities, mechanisms of action and clinical applications of the PV plant including its potential as a future medicinal plant. Although some of the chemical constituents of the PV plant and their mechanism of action have been investigated the biological activities of many of these remain unknown and further clinical trials are required to further enhance its reputation as a medicinal plant
    corecore