17 research outputs found

    Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p–Pb collisions at sNN=8.16 TeV

    No full text
    The study of the azimuthal anisotropy of inclusive muons produced in p–Pb collisions at sNN=8.16 TeV, using the ALICE detector at the LHC is reported. The measurement of the second-order Fourier coefficient of the particle azimuthal distribution, v2, is performed as a function of transverse momentum pT in the 0–20% high-multiplicity interval at both forward (2.032 GeV/c. The v2 coefficient of inclusive muons is extracted using two different techniques, namely two-particle cumulants, used for the first time for heavy-flavour measurements, and forward–central two-particle correlations. Both techniques give compatible results. A positive v2 is measured at both forward and backward rapidities with a significance larger than 4.7σ and 7.6σ, respectively, in the interval 2<pT<6 GeV/c. Comparisons with previous measurements in p–Pb collisions at sNN=5.02 TeV, and with AMPT and CGC-based theoretical calculations are discussed. The findings impose new constraints on the theoretical interpretations of the origin of the collective behaviour in small collision systems

    Exclusive and dissociative <math display="inline"><mi>J</mi><mo>/</mo><mi>ψ</mi></math> photoproduction, and exclusive dimuon production, in p-Pb collisions at <math display="inline"><mrow><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>NN</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>8.16</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></mrow></math>

    No full text
    International audienceThe ALICE Collaboration reports three measurements in ultraperipheral proton-lead collisions at forward rapidity. The exclusive two-photon process γγ→μ+μ- and the exclusive photoproduction of J/ψ are studied. J/ψ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5  GeV/c2 agrees with leading-order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/ψ photoproductions are measured for photon-proton center-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results

    Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

    No full text
    The first measurements of skewness and kurtosis of mean transverse momentum (〈pT〉) fluctuations are reported in Pb–Pb collisions at sNN = 5.02 TeV, Xe–Xe collisions at sNN = 5.44 TeV and pp collisions at s=5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size 〈dNch/dη〉|η|<0.51/3, using charged particles with transverse momentum (pT) and pseudorapidity (η), in the range 0.2<pT<3.0 GeV/c and |η|<0.8, respectively. In Pb–Pb and Xe–Xe collisions, positive skewness is observed in the fluctuations of 〈pT〉 for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of 〈pT〉 fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb–Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb–Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions

    First measurement of <math><msubsup><mi mathvariant="normal">Λ</mi><mrow><mi>c</mi></mrow><mo>+</mo></msubsup></math> production down to <math><mrow><msub><mi>p</mi><mi>T</mi></msub><mo>=</mo><mn>0</mn></mrow></math> in <math><mrow><mi>p</mi><mi>p</mi></mrow></math> and <math><mi>p</mi></math>-Pb collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>5.02</mn></mrow></math> TeV

    Get PDF
    International audienceThe production of prompt Λc+ baryons has been measured at midrapidity in the transverse momentum interval 0&lt;pT&lt;1 GeV/c for the first time, in pp and p–Pb collisions at a center-of-mass energy per nucleon-nucleon collision sNN=5.02TeV. The measurement was performed in the decay channel Λc+→pKS0 by applying new decay reconstruction techniques using a Kalman-Filter vertexing algorithm and adopting a machine-learning approach for the candidate selection. The pT-integrated Λc+ production cross sections in both collision systems were determined and used along with the measured yields in Pb–Pb collisions to compute the pT-integrated nuclear modification factors RpPb and RAA of Λc+ baryons, which are compared to model calculations that consider nuclear modification of the parton distribution functions. The Λc+/D0 baryon-to-meson yield ratio is reported for pp and p–Pb collisions. Comparisons with models that include modified hadronization processes are presented, and the implications of the results on the understanding of charm hadronization in hadronic collisions are discussed. A significant (3.7σ) modification of the mean transverse momentum of Λc+ baryons is seen in p–Pb collisions with respect to pp collisions, while the pT-integrated Λc+/D0 yield ratio was found to be consistent between the two collision systems within the uncertainties

    Measurements of Groomed-Jet Substructure of Charm Jets Tagged by <math display="inline"><mrow><msup><mrow><mi mathvariant="italic">D</mi></mrow><mrow><mn>0</mn></mrow></msup></mrow></math> Mesons in Proton-Proton Collisions at <math display="inline"><mrow><msqrt><mrow><mi>s</mi></mrow></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></mrow></math>

    No full text
    International audienceUnderstanding the role of parton mass and Casimir color factors in the quantum chromodynamics parton shower represents an important step in characterizing the emission properties of heavy quarks. Recent experimental advances in jet substructure techniques have provided the opportunity to isolate and characterize gluon emissions from heavy quarks. In this Letter, the first direct experimental constraint on the charm-quark splitting function is presented, obtained via the measurement of the groomed shared momentum fraction of the first splitting in charm jets, tagged by a reconstructed D0 meson. The measurement is made in proton-proton collisions at s=13  TeV, in the low jet transverse-momentum interval of 15≤pTjet ch&lt;30  GeV/c where the emission properties are sensitive to parton mass effects. In addition, the opening angle of the first perturbative emission of the charm quark, as well as the number of perturbative emissions it undergoes, is reported. Comparisons to measurements of an inclusive-jet sample show a steeper splitting function for charm quarks compared with gluons and light quarks. Charm quarks also undergo fewer perturbative emissions in the parton shower, with a reduced probability of large-angle emissions

    <math display="inline"><mrow><mi>ψ</mi><mo stretchy="false">(</mo><mn>2</mn><mi>S</mi><mo stretchy="false">)</mo></mrow></math> Suppression in Pb-Pb Collisions at the LHC

    No full text
    International audienceThe production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sNN=5.02  TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5&lt;y&lt;4). The measurement of the ratio of the inclusive production cross sections of the ψ(2S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region pT&lt;12  GeV/c. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio [σψ(2S)/σJ/ψ]Pb-Pb/[σψ(2S)/σJ/ψ]pp. It is found that in Pb-Pb collisions the ψ(2S) is suppressed by a factor of ∼2 with respect to the J/ψ. The ψ(2S) nuclear modification factor RAA was also obtained as a function of both centrality and pT. The results show that the ψ(2S) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to ∼3 with respect to pp. Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of RAA with higher-pT results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC

    Measurements of groomed-jet substructure of charm jets tagged by D0{\rm D}^0 mesons in proton–proton collisions at s\sqrt{s} = 13 TeV

    No full text
    Understanding the role of parton mass and Casimir colour factors in the quantum chromodynamics parton shower represents an important step in characterising the emission properties of heavy quarks. Recent experimental advances in jet substructure techniques have provided the opportunity to isolate and characterise gluon emissions from heavy quarks. In this work, the first direct experimental constraint on the charm-quark splitting function is presented, obtained via the measurement of the groomed shared momentum fraction of the first splitting in charm jets, tagged by a reconstructed D0{\rm D}^0 meson. The measurement is made in proton-proton collisions at s=13\sqrt{s} = 13 TeV, in the low jet transverse-momentum interval of 15pTjet ch<3015 \leq p_{\rm T}^{\rm jet~ch} < 30 GeV/cc where the emission properties are sensitive to parton mass effects. In addition, the opening angle of the first perturbative emission of the charm quark, as well as the number of perturbative emissions it undergoes, are reported. Comparisons to measurements of an inclusive-jet sample show a steeper splitting function for charm quarks compared to gluons and light quarks. Charm quarks also undergo fewer perturbative emissions in the parton shower, with a reduced probability of large-angle emissions.Understanding the role of parton mass and Casimir colour factors in the quantum chromodynamics parton shower represents an important step in characterising the emission properties of heavy quarks. Recent experimental advances in jet substructure techniques have provided the opportunity to isolate and characterise gluon emissions from heavy quarks. In this work, the first direct experimental constraint on the charm-quark splitting function is presented, obtained via the measurement of the groomed shared momentum fraction of the first splitting in charm jets, tagged by a reconstructed D0{\rm D}^0 meson. The measurement is made in proton--proton collisions at s\sqrt{s} = 13 TeV, in the low jet transverse-momentum interval of 15pTjet ch<3015 \leq p_{\rm T}^{\rm jet~ch} < 30 GeV/cc where the emission properties are sensitive to parton mass effects. In addition, the opening angle of the first perturbative emission of the charm quark, as well as the number of perturbative emissions it undergoes, are reported. Comparisons to measurements of an inclusive-jet sample show a steeper splitting function for charm quarks compared to gluons and light quarks. Charm quarks also undergo fewer perturbative emissions in the parton shower, with a reduced probability of large-angle emissions

    Light (anti)nuclei production in Pb-Pb collisions at <math><mrow><msqrt><msub><mi>s</mi><mrow><mi>N</mi><mi>N</mi></mrow></msub></msqrt><mo>=</mo><mn>5.02</mn><mo> </mo><mi>TeV</mi></mrow></math>

    Get PDF
    International audienceThe measurement of the production of deuterons, tritons and He3 and their antiparticles in Pb-Pb collisions at sNN=5.02TeV is presented in this article. The measurements are carried out at midrapidity (|y|&lt; 0.5) as a function of collision centrality using the ALICE detector. The pT-integrated yields, the coalescence parameters and the ratios to protons and antiprotons are reported and compared with nucleosynthesis models. The comparison of these results in different collision systems at different center-of-mass collision energies reveals a suppression of nucleus production in small systems. In the Statistical Hadronisation Model framework, this can be explained by a small correlation volume where the baryon number is conserved, as already shown in previous fluctuation analyses. However, a different size of the correlation volume is required to describe the proton yields in the same data sets. The coalescence model can describe this suppression by the fact that the wave functions of the nuclei are large and the fireball size starts to become comparable and even much smaller than the actual nucleus at low multiplicities

    System-size dependence of the hadronic rescattering effect at energies available at the CERN Large Hadron Collider

    No full text
    International audienceThe first measurements of K*(892)0 resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at sNN=5.44 TeV and pp collisions ats=5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (|y| &lt; 0.5) using the hadronic decay channel K*0 →K±π∓. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K*0, and yield ratios of resonance to stable hadron (K*0/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K*0 resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K*0 in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using the hadron resonance gas–partial chemical equilibrium model

    Neutron emission in ultraperipheral Pb-Pb collisions at sNN\sqrt {s_{NN}} = 5.02 TeV

    No full text
    International audienceIn ultraperipheral collisions (UPCs) of relativistic nuclei without overlap of nuclear densities, the two nuclei are excited by the Lorentz-contracted Coulomb fields of their collision partners. In these UPCs, the typical nuclear excitation energy is below a few tens of MeV, and a small number of nucleons are emitted in electromagnetic dissociation (EMD) of primary nuclei, in contrast to complete nuclear fragmentation in hadronic interactions. The cross sections of emission of given numbers of neutrons in UPCs of Pb208 nuclei at sNN=5.02 TeV were measured with the neutron zero degree calorimeters (ZDCs) of the ALICE detector at the LHC, exploiting a similar technique to that used in previous studies performed at sNN=2.76 TeV. In addition, the cross sections for the exclusive emission of one, two, three, four, and five forward neutrons in the EMD, not accompanied by the emission of forward protons, and thus mostly corresponding to the production of Pb207,206,205,204,203, respectively, were measured for the first time. The predictions from the available models describe the measured cross sections well. These cross sections can be used for evaluating the impact of secondary nuclei on the LHC components, in particular, on superconducting magnets, and also provide useful input for the design of the Future Circular Collider (FCC-hh)
    corecore