523 research outputs found

    Developing Stochastic Models for Spatial Inference: Bacterial Chemotaxis

    Get PDF
    Background: Biological systems are inherently inhomogeneous and spatial effects play a significant role in processes such as pattern formation. At the cellular level proteins are often localised either through static attachment or via a dynamic equilibrium. As well as spatial heterogeneity many cellular processes exhibit stochastic fluctuations and so to make inferences about the location of molecules there is a need for spatial stochastic models. A test case for spatial models has been bacterial chemotaxis which has been studied extensively as a model of signal transduction. Results: By creating specific models of a cellular system that incorporate the spatial distributions of molecules we have shown how the fit between simulated and experimental data can be used to make inferences about localisation, in the case of bacterial chemotaxis. This method allows the robust comparison of different spatial models through alternative model parameterisations. Conclusions: By using detailed statistical analysis we can reliably infer the parameters for the spatial models, and also to evaluate alternative models. The statistical methods employed in this case are particularly powerful as they reduce the need for a large number of simulation replicates. The technique is also particularly useful when only limited molecular level data is available or where molecular data is not quantitative

    Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube

    Full text link
    We have studied the afterpulse of a hemispherical photomultiplier tube for an upcoming reactor neutrino experiment. The timing, the amplitude, and the rate of the afterpulse for a 10 inch photomultiplier tube were measured with a 400 MHz FADC up to 16 \ms time window after the initial signal generated by an LED light pulse. The time and amplitude correlation of the afterpulse shows several distinctive groups. We describe the dependencies of the afterpulse on the applied high voltage and the amplitude of the main light pulse. The present data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure

    Enhanced production of tropane alkaloids in transgenic Scopolia parviflora hairy root cultures over-expressing putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H)

    Get PDF
    Scopolia parviflora adventitious roots were metabolically engineered by co-expression of the two gene putrescine N-methyl transferase (PMT) and hyoscyamine-6β-hydroxylase (H6H) cDNAs with the aid of Agrobacterium rhizogenes. The transformed roots developed into morphologically distinct S. parviflora PMT1 (SpPMT1), S. parviflora PMT1 (SpPMT2), and S. parviflora H6H (SpH6H) transgenic hairy root lines. Consequent to the introduction of these key enzyme genes, the production of the alkaloids hyoscyamine and scopolamine was enhanced. Among the transgenic hairy root lines, SpPMT2 line possessed the highest growth index. The treatment of transgenic hairy roots with growth regulators further enhanced the production of scopolamine. Thus, the results suggest that PMT1, PMT2, and H6H genes may not only be involved in the metabolic regulation of alkaloid production but also that these genes may play a role in the root development

    Neutron beam test of CsI crystal for dark matter search

    Full text link
    We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear recoils and γ\gamma's below 10 keV. The response of CsI crystals to nuclear recoil was studied with mono-energetic neutrons produced by the 3^3H(p,n)3^3He reaction. This was compared to the response to Compton electrons scattered by 662 keV γ\gamma-ray. Pulse shape discrimination between the response to these γ\gamma's and nuclear recoils was studied, and quality factors were estimated. The quenching factors for nuclear recoils were derived for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM

    Low energy fast events from radon progenies at the surface of a CsI(Tl) scintillator

    Full text link
    In searches for rare phenomena such as elastic scattering of dark matter particles or neutrinoless double beta decay, alpha decays of Rn222 progenies attached to the surfaces of the detection material have been identified as a serious source of background. In measurements with CsI(Tl) scintillator crystals, we demonstrate that alpha decays of surface contaminants produce fast signals with a characteristic mean-time distribution that is distinct from those of neutron- and gamma-induced events.Comment: 9 pages, 8 figure

    The COSINE-100 liquid scintillator veto system

    No full text
    This paper describes the liquid scintillator veto system for the COSINE-100 dark matter experiment and its performance. The COSINE-100 detector consists of eight NaI(Tl) crystals immersed in 2200 L of linear alkylbenzene-based liquid scintillator. The liquid scintillator tags between 65 and 75% of the internal 40K background in the 2–6 keV energy region. We also describe the background model for the liquid scintillator, which is primarily used to assess its energy calibration and threshold

    First limit on WIMP cross section with low background CsI(Tl) crystal detector

    Get PDF
    The Korea Invisible Mass Search (KIMS) collaboration has been carrying out WIMP search experiment with CsI(T\ell)crystal detectors at the YanYang Underground Laboratory. A successful reduction of the internal background of the crystal is done and a good pulse shape discrimination is achieved. We report the first result on WIMP search obtained with 237 kg\cdotdays data using one full-size CsI(T\ell)crystal of 6.6 kg mass.Comment: 16 pages, 9 figures, submitted to Physics Letters

    Measurement of the cosmic muon annual and diurnal flux variation with the COSINE-100 detector

    Get PDF
    We report measurements of annual and diurnal modulations of the cosmic-ray muon rate in the Yangyang underground laboratory (Y2L) using 952 days of COSINE-100 data acquired between September 2016 and July 2019. A correlation of the muon rate with the atmospheric temperature is observed and its amplitude on the muon rate is determined. The effective atmospheric temperature and muon rate variations are positively correlated with a measured effective temperature coefficient of αT = 0.80 ± 0.11. This result is consistent with a model of meson production in the atmosphere. We also searched for a diurnal modulation in the underground muon rate by comparing one-hour intervals. No significant diurnal modulation of the muon rate was observed

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
    corecore