5,643 research outputs found

    Digital twin-enabled human-robot collaborative teaming towards sustainable and healthy built environments

    Get PDF
    Development of sustainable and healthy built environments (SHBE) is highly advocated to achieve collective societal good. Part of the pathway to SHBE is the engagement of robots to manage the ever-complex facilities for tasks such as inspection and disinfection. However, despite the increasing advancements of robot intelligence, it is still ā€œmission impossibleā€ for robots to independently undertake such open-ended problems as facility management, calling for a need to ā€œteam upā€ the robots with humans. Leveraging digital twin's ability to capture real-time data and inform decision-making via dynamic simulation, this study aims to develop a human-robot teaming framework for facility management to achieve sustainability and healthiness in the built environments. A digital twin-enabled prototype system is developed based on the framework. Case studies showed that the framework can safely and efficiently incorporate robotics into facility management tasks (e.g., patrolling, inspection, and cleaning) by allowing humans to plan, oversee, manage, and cooperate with the robot via the digital twin's bi-directional mechanism. The study lays out a high-level framework, under which purposeful efforts can be made to unlock digital twin's full potential in collaborating humans and robots in facility management towards SHBE

    A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this record.Parameter calibration and sensitivity analysis are usually not straightforward tasks for distributed hydrological models, owing to the complexity of model and large number of parameters. A two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures based on the Distributed Hydrology-Soil-Vegetation Model in Jinhua River Basin, East China. A preliminary sensitivity analysis is conducted to obtain influential parameters via Analysis of Variance. These parameters are further analyzed through a variance-based global sensitivity analysis method to achieve robust rankings and parameter contributions. Parallel computing is designed to reduce computational burden. The results reveal that only a few parameters are significantly sensitive and the interactions between parameters could not be ignored. When analyzing hydrological signatures, it is found that water yield was simulated very well for most samples. Small and medium floods are simulated very well while slight underestimations happen to large floods.This work was supported by National Natural Science Foundation of China (91547106 and 51379183), Zhejiang Provincial Natural Science Foundation of China (LR14E090001), and National Key Research and Development Plan "Inter-governmental Cooperation in International Scientific and Technological Innovation"(2016YFE0122100)

    The interplay of proactive personality and internship quality in Chinese university graduates' job search success: The role of career adaptability

    Get PDF
    Based on the job characteristics model and career construction theory, this study examined the role of internship quality in the employment success of Chinese university students. A four-wave survey study was conducted in a sample of university graduates (Nā€Æ=ā€Æ207) and the results showed that after the effects of baseline career adaptability (Time 1) were controlled, internship quality (Time 2) and proactive personality (Time 2) positively were both associated with subsequent career adaptability (Time 3), which was further related to indicators of employment success (number of job offers, starting salary, and job search efficiency) at Time 4. In addition, internship quality was also found to be a significant moderator of the relationship between proactive personality and career adaptability as well as employment success, such that when internship quality was lower, the indirect effect of proactive personality on job search success through career adaptability was stronger. The corresponding moderated mediation model was also supported by the results. These findings carry implications for future studies on school-to-work transition and organizational recruitment practices

    Robust mode-locking in a hybrid ultrafast laser based on nonlinear multimodal interference

    Full text link
    We experimentally demonstrate the realization of a half-polarization-maintaining (half-PM) fiber laser, in which mode-locking is provided by a reflective multimode-interference saturable absorber (SA). In the specially designed SA, linearly polarized light is coupled into a 15-cm-long graded-index multimode fiber (GIMF) through the PM fiber, and then reflected back to the PM structure through a mirror pigtailed with a single-mode fiber (SMF). The modulation depth and saturation peak power are measured to be 1.5% and 0.6 W, respectively. The proposed SA device is incorporated into a novel half-PM erbium-doped fiber oscillator, which generates soliton pulses with 409 fs temporal duration at a 33.3 MHz repetition rate. The proposed fiber laser is compared with a conventional non-PM fiber laser mode-locked by nonlinear polarization evolution (NPE) in terms of optical properties such as spectral bandwidth, pulse duration, and stability performance. Short- and long-time stability tests and superior noise performance corroborate robust mode-locking in this setup.Comment: to be published in Optics and Laser Technolog

    Research Status of the Orphan G Protein Coupled Receptor 158 and Future Perspectives

    Get PDF
    G-protein-coupled receptors (GPCRs) remain one of the most successful targets for therapeutic drugs approved by the US Food and Drug Administration (FDA). Many novel orphan GPCRs have been identified by human genome sequencing and considered as putative targets for refractory diseases. Of note, a series of studies have been carried out involving GPCR 158 (or GPR158) since its identification in 2005, predominantly focusing on the characterization of its roles in the progression of cancer and mental illness. However, advances towards an in-depth understanding of the biological mechanism(s) involved for clinical application of GPR158 are lacking. In this paper, we clarify the origin of the GPR158 evolution in different species and summarize the relationship between GPR158 and different diseases towards potential drug target identification, through an analysis of the sequences and substructures of GPR158. Further, we discuss how recent studies set about unraveling the fundamental features and principles, followed by future perspectives and thoughts, which may lead to prospective therapies involving GPR158

    Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet

    Get PDF
    Current induced spin-orbit torques driven by the conventional spin Hall effect are widely used to manipulate the magnetization. This approach, however, is nondeterministic and inefficient for the switching of magnets with perpendicular magnetic anisotropy that are demanded by the high-density magnetic storage and memory devices. Here, we demonstrate that this limitation can be overcome by exploiting a magnetic spin Hall effect in noncollinear antiferromagnets, such as Mn3Sn. The magnetic group symmetry of Mn3Sn allows generation of the out-of-plane spin current carrying spin polarization collinear to its direction induced by an in-plane charge current. This spin current drives an out-of-plane anti-damping torque providing the deterministic switching of the perpendicular magnetization of an adjacent Ni/Co multilayer. Due to being odd with respect to time reversal symmetry, the observed magnetic spin Hall effect and the resulting spin-orbit torque can be reversed with reversal of the antiferromagnetic order. Contrary to the conventional spin-orbit torque devices, the demonstrated magnetization switching does not need an external magnetic field and requires much lower current density which is useful for low power spintronics

    Thermoelectric Properties of Novel Semimetals: A Case Study of YbMnSb<sub>2</sub>

    Get PDF
    The emerging class of topological materials provides a platform to engineer exotic electronic structures for a variety of applications. As complex band structures and Fermi surfaces can directly benefit thermoelectric performance it is important to identify the role of featured topological bands in thermoelectrics particularly when there are coexisting classic regular bands. In this work, the contribution of Dirac bands to thermoelectric performance and their ability to concurrently achieve large thermopower and low resistivity in novel semimetals is investigated. By examining the YbMnSb2 nodal line semimetal as an example, the Dirac bands appear to provide a low resistivity along the direction in which they are highly dispersive. Moreover, because of the regular-band-provided density of states, a large Seebeck coefficient over 160 ĀµV Kāˆ’1 at 300 K is achieved in both directions, which is very high for a semimetal with high carrier concentration. The combined highly dispersive Dirac and regular bands lead to ten times increase in power factor, reaching a value of 2.1Ā mW māˆ’1 Kāˆ’2 at 300 K. The present work highlights the potential of such novel semimetals for unusual electronic transport properties and guides strategies towards high thermoelectric performance. Ā© 2020 The Authors. Advanced Materials published by Wiley-VCH Gmb

    Seroprevalence of Mycoplasma bovis infection in dairy cows in subtropical southern China

    Get PDF
    The seroprevalence of Mycoplasma bovis infection in dairy cows in Guangxi Zhuang Autonomous Region (GZAR) in subtropical southern China was surveyed between June 2009 and March 2010. A total of 455 serum samples of dairy cows were collected from 6 districts in 4 different cities, and examined for M. bovis antibodies with the indirect enzyme-linked immunosorbent assay (ELISA) using a commercially available kit. The overall seroprevalence of M. bovis infection in dairy cows was 7.69% (35/455). Three year-old dairy cows had the highest seroprevalence (15.0%), followed by dairy cows of 4 year-old (11.1%). Dairy cows with the history of 5 pregnancies had the highest seroprevalence (33.3%). However, no statistically significant association was found between M. bovis infection and age or number of pregnancies (p &gt; 0.05). All the aborting dairy cows were negative for M. bovis antibodies, suggesting that bovine abortion may have no association with M. bovis infection in GZAR. These results indicate that M. bovis infection in dairy cows was widespread in GZAR, and integrated strategies and measures should be performed to control and prevent M. bovis infection and disease outbreak.Key words: Mycoplasma bovis, seroprevalence, dairy cows, Guangxi Zhuang Autonomous Region (GZAR), China, enzyme-linked immunosorbent assay (ELISA)

    PIM-1 as a Multifunctional Framework to Enable High-Performance Solid-State Lithium-Sulfur Batteries

    Get PDF
    Poly(ethylene oxide) (PEO) is a promising solid electrolyte material for solid-state lithiumā€“sulfur (Liā€“S) batteries, but low intrinsic ionic conductivity, poor mechanical properties, and failure to hinder the polysulfide shuttle effect limits its application. Herein, a polymer of intrinsic microporosity (PIM) is synthesized and applied as an organic framework to comprehensively enhance the performance of PEO by forming a composite electrolyte (PEO-PIM). The unique structure of PIM-1 not only enhances the mechanical strength and hardness over the PEO electrolyte by an order of magnitude, increasing stability toward the metallic lithium anode but also increases its ionic conductivity by lowering the degree of crystallinity. Furthermore, the PIM-1 is shown to effectively trap lithium polysulfide species to mitigate against the detrimental polysulfide shuttle effect, as electrophilic 1,4-dicyanooxanthrene functional groups possess higher binding energy to polysulfides. Benefiting from these properties, the use of PEO-PIM composite electrolyte has achieved greatly improved rate performance, long-cycling stability, and excellent safety features for solid-state Li-S batteries. This methodology offers a new direction for the optimization of solid polymer electrolytes
    • ā€¦
    corecore