15,167 research outputs found
Power Spectrum Analysis of the 2dF QSO Sample Revisited
We revisit the power spectrum analysis of the complete sample of the two
degree field (2dF) QSO redshift (2QZ) survey, as a complementary test of the
work by Outram et al. (2003). A power spectrum consistent with that of the 2QZ
group is obtained. Differently from their approach, fitting of the power
spectrum is investigated incorporating the nonlinear effects, the geometric
distortion and the light-cone effect. It is shown that the QSO power spectrum
is consistent with the cold dark matter (CDM) model with the matter
density parameter . Our constraint on the density
parameter is rather weaker than that of the 2QZ group. We also show that the
constraint slightly depends on the equation of state parameter of the dark
energy. The constraint on from the QSO power spectrum is demonstrated,
though it is not very tight.Comment: 15 pages, 5 figures, accepted for publication in the Astrophysical
Journa
Formation time distribution of dark matter haloes: theories versus N-body simulations
This paper uses numerical simulations to test the formation time distribution
of dark matter haloes predicted by the analytic excursion set approaches. The
formation time distribution is closely linked to the conditional mass function
and this test is therefore an indirect probe of this distribution. The
excursion set models tested are the extended Press-Schechter (EPS) model, the
ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB)
model. Three sets of simulations (6 realizations) have been used to investigate
the halo formation time distribution for halo masses ranging from dwarf-galaxy
like haloes (, where is the characteristic non-linear mass
scale) to massive haloes of . None of the models can match the
simulation results at both high and low redshift. In particular, dark matter
haloes formed generally earlier in our simulations than predicted by the EPS
model. This discrepancy might help explain why semi-analytic models of galaxy
formation, based on EPS merger trees, under-predict the number of high redshift
galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Unique gap structure and symmetry of the charge density wave in single-layer VSe
Single layers of transition metal dichalcogenides (TMDCs) are excellent
candidates for electronic applications beyond the graphene platform; many of
them exhibit novel properties including charge density waves (CDWs) and
magnetic ordering. CDWs in these single layers are generally a planar
projection of the corresponding bulk CDWs because of the quasi-two-dimensional
nature of TMDCs; a different CDW symmetry is unexpected. We report herein the
successful creation of pristine single-layer VSe, which shows a () CDW in contrast to the (4 4) CDW for the layers in
bulk VSe. Angle-resolved photoemission spectroscopy (ARPES) from the single
layer shows a sizable () CDW gap of 100 meV at the
zone boundary, a 220 K CDW transition temperature twice the bulk value, and no
ferromagnetic exchange splitting as predicted by theory. This robust CDW with
an exotic broken symmetry as the ground state is explained via a
first-principles analysis. The results illustrate a unique CDW phenomenon in
the two-dimensional limit
Scaling properties of the redshift power spectrum: theoretical models
We report the results of an analysis of the redshift power spectrum
in three typical Cold Dark Matter (CDM) cosmological models, where
is the cosine of the angle between the wave vector and the line-of-sight.
Two distinct biased tracers derived from the primordial density peaks of
Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are
considered in addition to the pure dark matter models. Based on a large set of
high resolution simulations, we have measured the redshift power spectrum for
the three tracers from the linear to the nonlinear regime. We investigate the
validity of the relation - guessed from linear theory - in the nonlinear regime
where
is the real space power spectrum, and equals . The
damping function which should generally depend on , , and
, is found to be a function of only one variable
. This scaling behavior extends into the nonlinear regime,
while can be accurately expressed as a Lorentz function - well known from
linear theory - for values . The difference between
and the pairwise velocity dispersion defined by the 3-D peculiar velocity of
the simulations (taking ) is about 15%. Therefore is a
good indicator of the pairwise velocity dispersion. The exact functional form
of depends on the cosmological model and on the bias scheme. We have given
an accurate fitting formula for the functional form of for the models
studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include
Can Geometric Test Probe the Cosmic Equation of State ?
Feasibility of the geometric test as a probe of the cosmic equation of state
of the dark energy is discussed assuming the future 2dF QSO sample. We examine
sensitivity of the QSO two-point correlation functions, which are theoretically
computed incorporating the light-cone effect and the redshift distortions, as
well as the nonlinear effect, to a bias model whose evolution is
phenomenologically parameterized. It is shown that the correlation functions
are sensitive on a mean amplitude of the bias and not to the speed of the
redshift evolution. We will also demonstrate that an optimistic geometric test
could suffer from confusion that a signal from the cosmological model can be
confused with that from a stochastic character of the bias.Comment: 11 pages, including 3 figures, accepted for publication in ApJ
Discovery From Non-Parties (Third-Party Discovery) in International Arbitration
International arbitration rules and many arbitration laws usually provide procedures that permit tribunals to order parties to disclose documents and other materials to the other parties.1 More complex are the rules that determine opportunities to obtain discovery from persons that are not party to the arbitration (third-party discovery). This article will review third-party discovery under the Federal Arbitration Act (FAA) and the provisions of the US Code s.1782 that authorise US courts to act in aid of actions before foreign tribunals. Section 1782 has unique interest at this time because it figured prominently in the EU antitrust investigation of Intel that was initiated on request from Advanced Micro Devices (AMD). Early in that investigation, AMD filed a s.1782 request in the US District Court to obtain evidence from US sources for submission to the DG-Competition of the European Commission (EC). This request ultimately led to the Supreme Court’s decision in Intel Corp v Advanced Micro Devices Inc2 which appeared to significantly expand the scope of s.1782. Ironically, after AMD won on key legal issues in the Supreme Court, the District Court on remand exercised its discretion and denied the request for judicial assistance. This paper first describes the FAA non-party discovery rules and the split among the federal appellate courts concerning the authority of arbitrators to order prehearing discovery from non-parties. Next, it provides an analysis of the meaning of the terms “interested party” and “tribunal”—terms that were controversially interpreted by the Supreme Court in Intel and are essential to the application of s.1782. Finally, it discusses the “discretionary” factors used by the federal courts in deciding whether to grant a s.1782 request even when the statutory criteria are met. The opportunity to exercise this discretion seems to rebut the argument that the Supreme Court’s interpretation of s.1782 gives participants before foreign tribunals more discovery rights in the United States than are available to the parties in arbitrations covered by the FAA
A Simple Model for Anisotropic Step Growth
We consider a simple model for the growth of isolated steps on a vicinal
crystal surface. It incorporates diffusion and drift of adatoms on the terrace,
and strong step and kink edge barriers. Using a combination of analytic methods
and Monte Carlo simulations, we study the morphology of growing steps in
detail. In particular, under typical Molecular Beam Epitaxy conditions the step
morphology is linearly unstable in the model and develops fingers separated by
deep cracks. The vertical roughness of the step grows linearly in time, while
horizontally the fingers coarsen proportional to . We develop scaling
arguments to study the saturation of the ledge morphology for a finite width
and length of the terrace.Comment: 20 pages, 12 figures; [email protected]
- …
