15,167 research outputs found

    Power Spectrum Analysis of the 2dF QSO Sample Revisited

    Full text link
    We revisit the power spectrum analysis of the complete sample of the two degree field (2dF) QSO redshift (2QZ) survey, as a complementary test of the work by Outram et al. (2003). A power spectrum consistent with that of the 2QZ group is obtained. Differently from their approach, fitting of the power spectrum is investigated incorporating the nonlinear effects, the geometric distortion and the light-cone effect. It is shown that the QSO power spectrum is consistent with the Λ\Lambda cold dark matter (CDM) model with the matter density parameter Ωm=0.20.5\Omega_m=0.2\sim0.5. Our constraint on the density parameter is rather weaker than that of the 2QZ group. We also show that the constraint slightly depends on the equation of state parameter ww of the dark energy. The constraint on ww from the QSO power spectrum is demonstrated, though it is not very tight.Comment: 15 pages, 5 figures, accepted for publication in the Astrophysical Journa

    Formation time distribution of dark matter haloes: theories versus N-body simulations

    Full text link
    This paper uses numerical simulations to test the formation time distribution of dark matter haloes predicted by the analytic excursion set approaches. The formation time distribution is closely linked to the conditional mass function and this test is therefore an indirect probe of this distribution. The excursion set models tested are the extended Press-Schechter (EPS) model, the ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB) model. Three sets of simulations (6 realizations) have been used to investigate the halo formation time distribution for halo masses ranging from dwarf-galaxy like haloes (M=103MM=10^{-3} M_*, where MM_* is the characteristic non-linear mass scale) to massive haloes of M=8.7MM=8.7 M_*. None of the models can match the simulation results at both high and low redshift. In particular, dark matter haloes formed generally earlier in our simulations than predicted by the EPS model. This discrepancy might help explain why semi-analytic models of galaxy formation, based on EPS merger trees, under-predict the number of high redshift galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Unique gap structure and symmetry of the charge density wave in single-layer VSe2_2

    Full text link
    Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe2_2, which shows a (7×3\sqrt7 \times \sqrt3) CDW in contrast to the (4 ×\times 4) CDW for the layers in bulk VSe2_2. Angle-resolved photoemission spectroscopy (ARPES) from the single layer shows a sizable (7×3\sqrt7 \times \sqrt3) CDW gap of \sim100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit

    Scaling properties of the redshift power spectrum: theoretical models

    Get PDF
    We report the results of an analysis of the redshift power spectrum PS(k,μ)P^S(k,\mu) in three typical Cold Dark Matter (CDM) cosmological models, where μ\mu is the cosine of the angle between the wave vector and the line-of-sight. Two distinct biased tracers derived from the primordial density peaks of Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are considered in addition to the pure dark matter models. Based on a large set of high resolution simulations, we have measured the redshift power spectrum for the three tracers from the linear to the nonlinear regime. We investigate the validity of the relation - guessed from linear theory - in the nonlinear regime PS(k,μ)=PR(k)[1+βμ2]2D(k,μ,σ12(k)), P^S(k,\mu)=P^R(k)[1+\beta\mu^2]^2D(k,\mu,\sigma_{12}(k)), where PR(k)P^R(k) is the real space power spectrum, and β\beta equals Ω00.6/bl\Omega_0^{0.6}/b_l. The damping function DD which should generally depend on kk, μ\mu, and σ12(k)\sigma_{12}(k), is found to be a function of only one variable kμσ12(k)k\mu\sigma_{12}(k). This scaling behavior extends into the nonlinear regime, while DD can be accurately expressed as a Lorentz function - well known from linear theory - for values D>0.1D > 0.1. The difference between σ12(k)\sigma_{12}(k) and the pairwise velocity dispersion defined by the 3-D peculiar velocity of the simulations (taking r=1/kr=1/k) is about 15%. Therefore σ12(k)\sigma_{12}(k) is a good indicator of the pairwise velocity dispersion. The exact functional form of DD depends on the cosmological model and on the bias scheme. We have given an accurate fitting formula for the functional form of DD for the models studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include

    Can Geometric Test Probe the Cosmic Equation of State ?

    Get PDF
    Feasibility of the geometric test as a probe of the cosmic equation of state of the dark energy is discussed assuming the future 2dF QSO sample. We examine sensitivity of the QSO two-point correlation functions, which are theoretically computed incorporating the light-cone effect and the redshift distortions, as well as the nonlinear effect, to a bias model whose evolution is phenomenologically parameterized. It is shown that the correlation functions are sensitive on a mean amplitude of the bias and not to the speed of the redshift evolution. We will also demonstrate that an optimistic geometric test could suffer from confusion that a signal from the cosmological model can be confused with that from a stochastic character of the bias.Comment: 11 pages, including 3 figures, accepted for publication in ApJ

    Discovery From Non-Parties (Third-Party Discovery) in International Arbitration

    Get PDF
    International arbitration rules and many arbitration laws usually provide procedures that permit tribunals to order parties to disclose documents and other materials to the other parties.1 More complex are the rules that determine opportunities to obtain discovery from persons that are not party to the arbitration (third-party discovery). This article will review third-party discovery under the Federal Arbitration Act (FAA) and the provisions of the US Code s.1782 that authorise US courts to act in aid of actions before foreign tribunals. Section 1782 has unique interest at this time because it figured prominently in the EU antitrust investigation of Intel that was initiated on request from Advanced Micro Devices (AMD). Early in that investigation, AMD filed a s.1782 request in the US District Court to obtain evidence from US sources for submission to the DG-Competition of the European Commission (EC). This request ultimately led to the Supreme Court’s decision in Intel Corp v Advanced Micro Devices Inc2 which appeared to significantly expand the scope of s.1782. Ironically, after AMD won on key legal issues in the Supreme Court, the District Court on remand exercised its discretion and denied the request for judicial assistance. This paper first describes the FAA non-party discovery rules and the split among the federal appellate courts concerning the authority of arbitrators to order prehearing discovery from non-parties. Next, it provides an analysis of the meaning of the terms “interested party” and “tribunal”—terms that were controversially interpreted by the Supreme Court in Intel and are essential to the application of s.1782. Finally, it discusses the “discretionary” factors used by the federal courts in deciding whether to grant a s.1782 request even when the statutory criteria are met. The opportunity to exercise this discretion seems to rebut the argument that the Supreme Court’s interpretation of s.1782 gives participants before foreign tribunals more discovery rights in the United States than are available to the parties in arbitrations covered by the FAA

    A Simple Model for Anisotropic Step Growth

    Get PDF
    We consider a simple model for the growth of isolated steps on a vicinal crystal surface. It incorporates diffusion and drift of adatoms on the terrace, and strong step and kink edge barriers. Using a combination of analytic methods and Monte Carlo simulations, we study the morphology of growing steps in detail. In particular, under typical Molecular Beam Epitaxy conditions the step morphology is linearly unstable in the model and develops fingers separated by deep cracks. The vertical roughness of the step grows linearly in time, while horizontally the fingers coarsen proportional to t0.33t^{0.33}. We develop scaling arguments to study the saturation of the ledge morphology for a finite width and length of the terrace.Comment: 20 pages, 12 figures; [email protected]
    corecore