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Simple model for anisotropic step growth
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1Helsinki Institute of Physics, P.O. Box 9, FIN-00014 University of Helsinki, Helsinki, Finland
2Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912-1843

3Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02150 HUT, Espoo, Finland
~Received 7 November 1997; revised manuscript received 11 February 1998!

We consider a simple model for the growth of isolated steps on a vicinal crystal surface. It incorporates
diffusion and drift of adatoms on the terrace, and strong step and kink edge barriers. Using a combination of
analytic methods and Monte Carlo simulations, we study the morphology of growing steps in detail. In
particular, under typical molecular beam epitaxy conditions the step morphology is linearly unstable in the
model and develops fingers separated by deep cracks. The vertical roughness of the step grows linearly in time,
while horizontally the fingers coarsen proportional tot0.33. We develop scaling arguments to study the satura-
tion of the ledge morphology for a finite width and length of the terrace.@S1063-651X~98!04506-1#

PACS number~s!: 81.15.Hi, 68.35.Fx, 82.20.Wt

I. INTRODUCTION

Atomistically controlled growth of metal and semicon-
ductor crystal surfaces constitutes an important field of re-
search both from technological@1# and fundamental theoret-
ical @2# points of view. Among all the different growth
techniques, molecular beam epitaxy~MBE! has a special sta-
tus since it can be very efficiently used to produce growth in
a well defined layer-by-layer growth mode. Experiments us-
ing the reflection high-energy electron diffraction technique
@3# indicate two main mechanisms of growth in such cases:
layer growth by nucleation and spreading of two-
dimensional~2D! islands on a nominally flat substrate, and
step-flow growth of a substrate with steps. In the latter case,
it is crucial to be in the regime where the flux of adatoms is
small enough, and their diffusion fast enough to avoid island
nucleation on terraces. Such a window of the relevant physi-
cal parameters may be found experimentally for many mate-
rials @1#.

An important practical realization of the step-flow situa-
tion is epitaxial growth on avicinal surface that is cut in a
direction slightly off from a high-symmetry one. Such sur-
faces often consist of broad terraces of size separated by
monatomic steps at distancel from each other. By changing
the miscut angle, the density of the steps and thusl may be
controlled. The physics of MBE growth on such surfaces can
be in the simplest terms described by the following sche-
matic model~see Fig. 1!. There is a fluxF of adatoms that
impinges upon the terraces. Particles on terraces then diffuse
around with an associated diffusion constantD, and may be
desorbed after a timet. Upon approaching step edges, par-
ticles can either cross them from above or below, be reflected
from them, or be incorporated into the growing ledge. At-
tachment is usually characterized by Arrhenius-type rate
constantsk1 and k2 , which refer to the average rates of

particles arriving at the ledge from below or above, respec-
tively.

This simplified picture of step-flow growth was first intro-
duced by Burtonet al. @4#. More recently, attention has been
drawn to the fact that in many real systems,k1 andk2 need
not be equal@5# because of the existence ofstep edge barri-
ers@6#. These barriers may often be present at step edges due
to reduced coordination of atoms. Recent theoretical work
shows that the step barriers play an important role in control-
ling growth under MBE situations@7,8#. In particular, if
these barriers are high, adatoms cannot cross steps, and the
particle current will be in the direction of ascending steps.
For vicinal surfaces, this stabilizes the step-flow growth
mode when nucleation on terraces is neglected. If the aver-
age distance between nucleation centers isl N , step-flow
growth requires thatl / l N!1.

Most of the recent work dealing with step growth has
concentrated on the global properties and kinetic roughening
of growing surfaces with steps under MBE conditions
@1,2,9#. However, attention has also been paid to the proper-
ties of individual steps under growth@10–14#. It is a well
known property of ideal, isolated 1D steps that they are ther-
mally rough above zero temperature due to kinks. Using lin-
ear stability analysis, Bales and Zangwill@11# have shown

*Author to whom correspondence should be addressed. Electronic
address: alanissi@csc.fi

FIG. 1. A schematic view on adatom dynamics on a vicinal
surface. The local adatom concentration is denoted byn and the
other symbols are explained in the text.
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that in a system with unequal attachment ratesk1Þk2 , a
straight terrace ledge can become unstable whenk1.k2 .
This kind of growth-driven instability is particularly interest-
ing since it may lead to the appearance of ‘‘wavy’’ patterns
of the ledges. More recently, Salditt and Spohn@12# have
argued that in addition to the instability, there is a regime for
isolated steps~in the case of strong step-edge barriers! where
the Kardar-Parisi-Zhang~KPZ! @15# theory of kinetic rough-
ening is valid. In this regime, the width of the ledge eventu-
ally roughens ast1/3 in analogy to many 1D surface deposi-
tion models@2#.

In this work, we study the nature of ledge or step-edge
morphologies, and the question of their roughening behavior
in a simple but nontrivial model of isolated steps. This model
is in part motivated by the energetics of adatoms on Si~001!
surfaces with widely separated steps. In the model, we as-
sume infinitely strong step-edge barriers and biased diffusion
both on the terrace and at the ledge. As expected@11#, the
ledge always becomes morphologically linearly unstable due
to the dominance of the one-sided diffusion field. Through a
combination of analytic arguments and computer simula-
tions, we show that the ledge develops fingerlike structures
and its roughness grows linearly in time, in contrast to the
KPZ type of roughening predicted by Salditt and Spohn@12#
in the stable regime. In addition, we study the lateral coars-
ening of these fingers and show that it follows at0.33 behav-
ior. We develop scaling arguments to study the influence of
the finite width and finite length of the terrace on the growth.
Finally, we discuss the relevance of these results with respect
to experiments on ledge roughening under MBE growth@16#.

II. ANISOTROPIC STEP GROWTH MODEL

A. Definition of the model

The model is defined on a two-dimensional square lattice
where there is a single growing step. The average direction
of the ledge is along thex axis, where the width isLx with
periodic boundary conditions. Initially at timet50 the step
at y50 is completely straight with no thermal fluctuations
present. Growth of the ledge is initiated by depositing a
single particle randomly on an empty, randomly chosen ter-
race site in front of the ledge aty.0. After this, the particle
performs random walk and drifts towards the ledge by jump-
ing l d lattice sites in the2y direction at every random walk
step on the average. This means that during each step, the
particle moves in the2y direction with a probability (1/4
1 l d)/(11 l d), while for the other three directions the prob-
ability is (1/4)/(11 l d).

The ledge acts as an absorbing boundary to the particle
with the following rules~see Fig. 2!: ~i! if the particle arrives
at the ‘‘top’’ ~a section along thex direction of the step!, it is
incorporated into it and becomes immobile;~ii ! if the particle
arrives at the ‘‘side’’~a section along they direction of the
step!, it will instantaneously slide down along the ledge to
the 2y direction until it reaches the corner site, where it is
permanently incorporated into the step. These rules guaran-
tee that the set of step heights$h(x,t)% as measured fromy
50 obeys the solid-on-solid restriction, and the step forms a
compact structure.

After the particle has been incorporated into the step, a
new particle is deposited and the process is repeated. Time in

the model is measured in terms of the average height of the
growing step edge. We note that the size of the terrace in the
y direction is not fixed, but is chosen in such a way that the
distance from the highest point of the stepH(t)
[max$h(x,t)% is kept at a constant value. The corresponding
boundary abovey5H1Ly11 is completely reflecting and
remains straight. This means that a particle aty5H1Ly that
takes a step in they direction is immediately reflected back.

An important feature of the growth model is the deposi-
tion of adatoms on the lower terrace only. This is tantamount
to assuming that the step barriers are infinitely high with
k250 so that adatoms are reflected from a downward step
leading to an average particle current in the2y direction
towards the up steps. The drift terml d is defined only in an
average macroscopic sense and will depend on the deposi-
tion flux and the concentration of adatoms on the terrace in
front of the step. Also, since we assume that there is no
desorption of adatoms (t5`), l d also depends on the veloc-
ity of the step, which in turn depends on the terrace length
Ly . Thus l d is, in principle, determined self-consistently by
the other parameters of the model, but we regard it as an
independent parameter that may be varied externally@17#.

Finally, we would like to mention that the growth rules of
the model are in part motivated by adatom dynamics on
Si~001! surfaces with widely separated steps@18–21# under
typical MBE conditions. Namely, on Si~001! diffusion is
spatially anisotropic both on the terrace@22,18–20# and at
the step edges@18,19#. However, at least for the case of
single-height steps on Si~001!, microscopic calculations
@18,19# and experiments@16,20# indicate that there is no sig-
nificant step-edge barrier. Thus, we make no attempt to real-
istically model the complicated adatom dynamics in this sys-
tem, since the main motivation here is to study the generic
features of the unstable regime for isolated steps.

B. Simulation algorithm for the model

A straightforward Monte Carlo simulation of the growth
model proposed here is in principle possible, but very diffi-

FIG. 2. Adatom dynamics in the growth model. ForLy,`,
deposition occurs uniformly randomly at all available~unoccupied!
sites, while forLy5`, the particles are released from the line at
y5H11. Particles then diffuse on the lower terrace, and drift in the
2y direction. They become incorporated into the step when they
either land on a top section of the step~along thex axis! or slide
down along the2y direction to the nearest kink site, as shown
schematically in the figure. If a particle attempts to cross the line at
(x0 ,H11) in the y direction, it is immediately returned from
(x0 ,H12) to the line with new coordinates (x01x,H11) chosen
from the spatial distributionPLy(x). The boundary abovey5H
1Ly11 ~not shown! is completely reflecting.
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cult for large values ofLy and small drifts. This is because
particles landing on the terrace may wander arbitrarily far
from the step edge, and thus the time for a particle to become
incorporated into a growing step may become very large.
This problem can be solved by considering the properties of
2D random walkers on a finite or semi-infinite plane. For
such cases, it is possible to calculate analytically the spatial
and temporal probability distributions for the walkers. The
idea then is that for particles that initially land on the terrace
with y.H11 ~which is always the case ifLy5`), the
simulation can be started by releasing them from an imagi-
nary line that runs along thex direction just one lattice site
above the highest step, i.e., aty5H11 ~see Fig. 2!. If the
particle crosses the line again in the1y direction while per-
forming random walk, it is immediately returned to it with a
new x coordinate chosen from the appropriate spatial distri-
bution, which will be derived below. In the Appendix we
also calculate the mean arrival~first passage! time of a
walker and indeed show that this time becomes very large
for small values ofl d and largeLy .

More specifically, to implement the simulation algorithm
described above, we need to calculate the spatial probability
distribution functionPLx,Ly(x), which is used to obtain the
new position for a walker that crosses the liney5H11 at
any point. In other words, a walker crossing the line being at
(x0 ,H12) with any x0 is put back to the new site (x
2x0 ,H11) with the probabilityPLy(x), where we assume
for simplicity thatLx5` ~see Fig. 2!. For a discrete walker,
this function satisfies the recursion relation

PLy~x!5
1

2aS bdx,01PLy~x21!1PLy~x11!

1 (
y52`

`

PLy~x2y!PLy21~y!D , ~1!

wherea5212l d and b5114l d . Using the standard Fou-
rier transformation

P̃Ly~k!5 (
x52`

`

eikxPLy~x!, ~2!

we obtain

P̃Ly~k!5
1

2a
@b1eikP̃Ly~k!1e2 ikP̃Ly~k!

1 P̃Ly21~k!P̃Ly~k!#. ~3!

This gives

P̃Ly~k!5
b

2a22 cosk2 P̃Ly21~k!
, ~4!

which must be solved with the initial conditionP̃0(k)51 for
any k. For Ly,`, the continued fraction expansion of Eq.
~4! must be solved numerically in general. Even in the zero
drift case the expansion converges rapidly, as discussed in
the Appendix. In the special case of an infinitely long terrace
Ly5`, P̃Ly(k)5 P̃Ly21(k), and Eq.~4! gives

P̃`~k!5a2cosk2A~a2cosk!22b. ~5!

In Fig. 3 we show the behavior ofPLy
(x) for various

values ofLy and l d . In the continuum limit, the tail of this
function goes asx22 for the case of zero drift.

In practice, we also need the propagator for a periodic
system with a finite widthLx . This is most easily obtained in
the Fourier space by

PLx,Ly~x!5 (
r 52`

`

PLy~x1rL x!

5 (
r 52`

`
1

2pE0

2p

dk e2 ik~x1rL x!P̃Ly~k!

5E
0

2p

dk e2 ikxP̃Ly~k!
1

2p (
r 52`

`

e2 ikrL x

5E
0

2p

dk e2 ikxP̃Ly~k!
1

Lx
(

n52`

`

dS k2
2pn

Lx
D

5
1

Lx
(
n50

Lx21

e2 i ~2pnk/Lx!P̃LyS 2pn

Lx
D . ~6!

Numerically, Eq.~6! is easy to implement using the fast-
Fourier-transform algorithm.

C. Continuum limit of the model

It is relatively straightforward to write down a continuum
description by using the diffusion equation~an electrostatic
analogy@23# can also be employed!. The probability density
of a random walkeru(rW,t) obeys the biased diffusion equa-
tion with a source termr(rW,t):

2¹W •D•¹W u~rW,t !1vW •¹W u~rW,t !5r~rW,t !. ~7!

Using the distribution of the biased random walk, we can
derive expressions for the drift termvW 5(0,vd) and the diag-
onal elements of the diffusion tensorD5Dmn (m,n5x,y) to

FIG. 3. Probability distributionP`(x) for the return position
with Lx5104 andLy5`. The drift parameterl d51, 1/2, 1/4, 1/8,
1/16, and 0~from top to bottom atx50). In the limit l d→` the
distribution approaches ad function.
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be vd52 l d /(11 l d), and Dxx51/(414l d) and Dyy51/(4
14l d)18l d /(414l d)2. We note that in the model, diffusion
is always only slightly anisotropic forl d.0, andDxx /Dyy
51/3 for l d→` @24#. The source termr in Eq. ~7! is con-
stant over the whole terrace. The boundary conditions are
that for the step edgeu50 and for the reflecting boundary
]u/]y50. Also, the arrival probability of a random walker
at the step edge is proportional to the normal derivative of
the probability fieldu. With zero drift (l d50), Eq. ~7! re-
duces to the Poisson equation obeyed by many growth mod-
els ~see, e.g., Refs.@23,25,26#!. The present sticking rules
guarantee that the growing step forms a compact structure, in
contrast to the typical diffusion limited aggregation models
@23#. It is also evident from the stability analysis of Salditt
and Spohn@12# ~see also Ref.@11#! that the one-sided diffu-
sion field is highly destabilizing, and the step-edge morphol-
ogy is always controlled by the instability rather than de-
scribed by the nonlinear KPZ equation@12#.

III. NUMERICAL RESULTS

A. Ledge roughness

We have performed extensive Monte Carlo simulations of
the model with the algorithm described in Sec. II. In this
work, we consider the case of finitel d only @27#. First, we
discuss results for the roughness of the growing ledge on an
infinitely long terrace (Ly5`) with a large value ofLx
5104. In this case, after a short initial transient the undula-
tions of the ledge grow and fingerlike structures emerge,
separated by deep cracks. The cracks deepen and the fingers
themselves coarsen at the expense of other fingers. In Fig. 4,
we show a sequence of typical successive configurations for
different values ofl d . We find that the widthw(t) of the
interface associated with the ledge follows power law behav-
ior

w~ t ![^@h~x,t !2h̄~ t !#2&1/25Atb1, ~8!

where the brackets and the overbar denote an average over
the configurations and over each finite system, respectively.
The height variableh(x,t) is the column height of the ledge
as measured fromy50. Numerically, we find that the width
w(t) grows linearly withb151.060.01 and its slopeA( l d)
depends on the driftl d ~Fig. 5!. Linear growth can be under-
stood qualitatively, since particles arriving at the vertical sec-
tion of the ledge do not contribute significantly to the ledge
roughness. The increase in the roughness is mainly due to
particles that stick on top of the columns, and thus the width
grows proportional to the total particle number, i.e., time.
The change in the growth rate is also easy to explain quali-
tatively. With small drifts, only the top of the finger grows
and very few particles reach the bottom of the cracks. With
larger drifts, the probability of reaching the bottom increases,
and thusw increases more slowly~see also Fig. 4!.

The value ofb151 is consistent with the theory of Elki-
nani and Villain@28# for a simple 1D Zeno model of MBE
growth with step-edge barriers. Instead of ledges, they con-
sider deposition of adatoms on a stepped surface with diffu-
sion. They show that with strong step-edge barriers, deep
cracks are formed on the surface whose depth grows linearly

in time. In this case, the deposition noise is not relevant and
this result can be obtained from a deterministic model.

To study the effect of a finite terrace lengthLy,`, we
have simulated the model withl d51/4, Lx5104, and Ly
550, 70, 100, 140, 200, and 500. Due to the fact that in such
finite systems the relative proportion of the flux deposited in
between the fingers increases with time, the widthw(t)
eventually saturates to anLy-dependent value, but doesnot
saturate as a function ofLx . We find that the width satisfies
the scaling ansatz of Family-Vicsek@2,29#:

w~Ly ,t !5tx1 /z1f 1~Ly /t1/z1!, ~9!

FIG. 4. Ten consecutive step profiles from the growth model
with Lx5104 andLy5` at t51000,2000, . . . ,104 with the drift ~a!
l d51/4, ~b! l d51, and~c! l d54. Only part of the system is shown.
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where the scaling functionf 1(x) behaves as

f 1~x!;H const, x@1,

xx1, x!1. ~10!

The exponentx1 characterizes the surface morphology in
the saturated regimew(Ly);Ly

x1 , and the crossover time

tsat;Ly
z1 determines where the saturation takes over. The

growth exponent fort!tsat is b15x1 /z1. We find that set-
ting b151, z151.0060.03 collapses our data best to a
single scaling function shown in Fig. 6. We have also ob-
tained the exponentx1 by fitting to the saturated width
w(Ly) and find thatx150.9660.02.

B. Finger coarsening

In our model, diffusion along the ledge is limited by infi-
nitely strong barriers, since the particles can never go around
corners. This is basically the same effect as step barriers

along the surface of the 1D Zeno model. However, since in
our model there is a real diffusion field surrounding the fin-
gers on the terrace, additionalfinger coarsening@30# takes
place as is evident in the configurations of Fig. 4. For a finite
system withLx,`, this eventually leads to a configuration
where there is only one finger present. To investigate the
temporal scaling of the thickness of the fingers, we have
studied how the first zero of the Green’s function atr
5r 0(t),

G~r ,t !5K 1

N(
x

h~x1r ,t !h~x,t !2h̄~ t !2L , ~11!

behaves as a function of time. The behavior ofr 0(t) should
indicate the existence of a characteristic, time-dependent cor-
relation length in the direction perpendicular to the direction
of growth. In Fig. 7 we showr 0(t) for several values ofl d
whenLx5104 andLy5`. To a good degree of accuracy, we
find thatr 0(t);tbr, with the valueb r50.3260.01 for drifts
varying from 1/8 to 32. There is, however, a long crossover
regime at the beginning of the growth that depends on the
drift, being longer for larger drift values.

It is also interesting to study the scaling of the Green’s
function. Asymptotically, we expectG(r ,t) to scale as@31#

G~r ,t !5t22b1gl d
~ t2br r !, ~12!

wheregl d
(x) is a new scaling function associated with the

coarsening process. In Fig. 8 we show scaling of the data for
G(r ,t), with a very good data collapse obtained with
b151 and b r51/3 @32#. It is interesting to note that the
finger coarsening in the present model follows the same
power law of 1/3 as model B, which describes domain coars-
ening due to long-range diffusion@31,33#. However, al-
though qualitatively similar, the present scaling function de-
picted in Fig. 8 is quantitatively different from that of model
B @33#. The exponent 1/3 also appears in models of noise-
driven coarsening of mounds in 1D surface growth where
slope selection occurs because of step-edge barriers@7,26#.

The finite-size scaling ofr 0 is different from that of the
width w, since for a system with a finite terrace widthLx

FIG. 5. The step widthw(t) for l d51/8, 1/4, 1/2, 1, 2, 4, 8, 16,
and 32~from top to bottom! with Lx5104 andLy5`. The slopeA
as a function of the driftl d is shown in the inset.

FIG. 6. Scaling functionf 1 of Eq. ~10! for the step width
w(Ly ,t) with Ly550, 70, 100, 140, 200, and 500. Good scaling is
obtained withb151 andz151. The drift l d51/4 and the lateral
lattice sizeLx5104.

FIG. 7. The finger widthr 0(t) for l d51/8, 1/4, 1/2, 1, 2, 4, 8,
16, and 32~from top to bottom! with Lx5104 and Ly5`. The
dashed line indicates a slope of 1/3.
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,` but with Ly5`, the late-time configuration consists of
one finger only, whose vertical roughnessw keeps on grow-
ing linearly but whoser 0 saturates. This introduces a new
exponentz2 that controls the saturation ofr 0 in the x direc-
tion. On the other hand, forLx5` andLy,`, both w and r0
saturate, and their saturation must be characterized by the
same exponentz1 in Eq. ~9!. Thus, for the general case of
both Lx ,Ly,`, we expect the following scaling form to
hold:

r 0~Lx ,Ly ,t !5tbr f r S Lx

t1/z2
,

Ly

t1/z1D . ~13!

We will not study the whole scaling functionf r(x,y) here
but consider the effects of a finiteLx andLy separately@34#.
For Ly5`, we can again write down the Family-Viscek
form as

r 0~Lx ,t !5tx2 /z2f 2~Lx /t1/z2!, ~14!

where nowb r[x2 /z2, and the scaling functionf 2 has the
same limits asf 1, but now with a new roughness exponent
x2. We have simulated the model withLx5 20, 50, 100, and
200 using the driftl d51. Because of the single finger final
configuration, there are large fluctuations in the data and thus
we have determined the saturation exponentx2 by estimating
the saturated widthr 0(Lx) directly for various values ofLx .
From the data, our best estimate isx251.0260.01, i.e., the
width of the final finger grows as the horizontal system size.
Together withb r50.33 this implies thatz253.0.

In the case of a finiteLy , we expect that the scaling form
satisfies

r 0~Ly ,t !5tx3 /z1f 3~Ly /t1/z1!, ~15!

whereb r must now satisfy the relationb r5x3 /z1, with x3
being another new roughness exponent. The limits off 3 and
f 1 are again of the same form. By using system sizesLy5
50, 70, 100, 140, 200, and 500 with the driftl d51/4, our
data collapse to the scaling form shown in Fig. 9 withx3
50.3360.01 andz151.0060.03. Moreover, we have ob-

tained another estimate of the new saturation exponentx3 by
estimating the saturated widthr 0(Ly) and indeed verify that
x350.3460.02.

IV. SUMMARY AND CONCLUSIONS

In summary, in this work we have introduced and exam-
ined a very simple model for the growth of an isolated step
with infinitely strong step-edge barriers. The destabilizing
effect of the one-sided biased diffusion field coupled with
strongly anisotropic adatom dynamics makes the ledge mor-
phologically unstable, with fingerlike structures developing
separated by deep cracks. After an initial early-time transient
the fingers coarsen ast0.33 and the width of the ledge grows
linearly. For an infinitely wide and long terrace, the fingers
eventually become needlelike. We have also studied the
finite-size scaling of both the coarsening and the width of the
ledge in detail, and determined the corresponding scaling
exponents.

Recently, Pierre-Louiset al. @14# have considered in de-
tail a more realistic model of step train growth in the case of
weak desorption, and one-side attachment. As in the present
case, they find that the step morphology is linearly unstable,
but now the individual step widths grow}t1/2, with the steps
‘‘locked in’’ together. In this regime, there is no step coars-
ening, either. Thus, we expect our model to be relevant only
for the case where the steps are well isolated, and detach-
ment from step edges can be neglected.

Experimentally, growth of steps on slightly miscut
Si~001! surfaces has been studied, with the claimed result
that the step roughening is consistent with the KPZ predic-
tion @35#. However, at least superficially the steps depicted in
Ref. @35# appear to develop fingerlike structures separated by
deep grooves characteristic of the unstable regime studied
here and in Ref.@14#. It would be interesting to carry out
more systematic studies of roughening of widely spaced
steps on semicondutor surfaces to characterize the nature of
the instability.

FIG. 8. Scaling functiongl d
of Eq. ~13! for G(r ,t) with Lx

5104 and l d51 at ten different timest51000,2000, . . . ,104, with
b151 andb r51/3.

FIG. 9. Scaling functionf 3 of Eq. ~16! for the finger widthr 0

with the terrace lengthLy550, 70, 100, 140, 200, and 500. The
drift l d51/4 and the lateral lattice sizeLx5104, andb r51/3 and
z151.
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APPENDIX

In this appendix, we calculate explicitly the average ar-
rival time tarr of a walker to demonstrate the need to use the
present algorithm. We will also discuss the convergence of
the probability distribution for finite terraces withLy,`. To
begin with, the distribution for the number of steps or the
distribution of the first passage timePLy(t), can be calcu-
lated similar to the spatial distribution of Eq.~1! by the re-
cursion

PLy~ t !5
1

2a (
s51

`

d t2s,1S bds,012PLy~s!

1 (
u51

`

PLy~s2u!PLy21~u!D . ~A1!

Using the temporal Fourier transform

P̃Ly~v!5 (
t52`

`

e2 ivtPLy~ t ! ~A2!

we obtain the characteristic function as

P̃Ly~v!5
b

2aeiv222 P̃Ly21~v!
, ~A3!

which can be solved with the initial valueP̃0(v)51. Again,
P̃Ly(v)5 P̃Ly21(v) when Ly→` and P̃`(v) can be ob-
tained. The average arrival time is proportional to the first
derivative of the characteristic function atv50 by

tarr5(
t51

`

tP~ t !5 i
dP̃~v!

dv
U

v50

52
P̃Ly

2 ~0!

b S 2ia2
dP̃Ly21~v!

dv
U

v50
D

5
dP̃Ly~v!

dv
U

v50

522ia (
n51

Ly S 1

bD n

5S 11
1

l d
D S 12

1

~114l d!LyD ~A4!

when l d.0. In the infinite terrace limit (Ly→`), tarr51
11/l d , while for l d50 it is easy to show thattarr54Ly .
Thus, the return time quickly becomes prohibitively large for
large systems and small values of the drift, making brute-
force Monte Carlo simulations difficult. On the other hand,
for drifts larger than unity, no significant reduction in com-
puter time can be obtained with the new algorithm.

Finally, to estimate the convergence of the probability
distributionPLy(x) towards its asymptotic limit as a function
of the terrace lengthLy for anyLx , we can define the devia-
tion d by

d2~Lx ,Ly ,l d!5
1

Lx
(
n50

Lx21 F P̃LyS n

2pLx
D2 P̃`S n

2pLx
D G2

,

~A5!

assuming a periodic system in thex direction. In Fig. 10, we
show the deviation for various values of the drift as a func-
tion of Ly .
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