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Simple model for anisotropic step growth
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2Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912-1843
3Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02150 HUT, Espoo, Finland
(Received 7 November 1997; revised manuscript received 11 February 1998

We consider a simple model for the growth of isolated steps on a vicinal crystal surface. It incorporates
diffusion and drift of adatoms on the terrace, and strong step and kink edge barriers. Using a combination of
analytic methods and Monte Carlo simulations, we study the morphology of growing steps in detail. In
particular, under typical molecular beam epitaxy conditions the step morphology is linearly unstable in the
model and develops fingers separated by deep cracks. The vertical roughness of the step grows linearly in time,
while horizontally the fingers coarsen proportionatd® We develop scaling arguments to study the satura-
tion of the ledge morphology for a finite width and length of the terrf8&063-651X98)04506-]

PACS numbg(s): 81.15.Hi, 68.35.Fx, 82.20.Wt

[. INTRODUCTION particles arriving at the ledge from below or above, respec-
tively.

Atomistically controlled growth of metal and semicon-  This simplified picture of step-flow growth was first intro-
ductor crystal surfaces constitutes an important field of reduced by Burtoret al.[4]. More recently, attention has been
search both from technologicgl] and fundamental theoret- drawn to the fact that in many real systerks,andk_ need
ical [2] points of view. Among all the different growth not be equal5] because of the existence step edge barri-
techniques, molecular beam epita®BE) has a special sta- €rs[6]. These barriers may often be present at step edges due
tus since it can be very efficiently used to produce growth ifo reduced coord|nat|on_ of atoms. Recent theorefucal work
a well defined layer-by-layer growth mode. Experiments usShows that the step barriers play an important role in control-

ing the reflection high-energy electron diffraction technique!Nd 9rowth under MBE situation$7,8]. In particular, if

[3] indicate two main mechanisms of growth in such Cases’ghese barriers are high, adatoms cannot cross steps, and the

layer growth by nucleation and spreading of two- particl_e_current will be ir_1 the di_rfaction of ascending steps.

dimensional(2D) islands on a nominally flat substrate, and For vicinal surfaces, this stab|I|zes_, the step-flow growth
. ’ mode when nucleation on terraces is neglected. If the aver-

;t_ep-flovx_/ growth .Of a subst_rate with steps. In the latter Ca?eage distance between nucleation centerdjs step-flow

it is crucial to be in the regime where the flux of adatoms is owth requires thal/l <1.

r
small enough, and their diffusion fast enough to avoid islanciJ Most of the recent work dealing with step growth has

nucleation on terraces. Such a window of the relevant physig,ncentrated on the global properties and kinetic roughening
qal parameters may be found experimentally for many mategs growing surfaces with steps under MBE conditions
rials [1]. [1,2,9. However, attention has also been paid to the proper-
An important practical realization of the step-flow situa- ties of individual steps under growfi0—-14. It is a well
tion is epitaxial growth on aicinal surface that is cut in a known property of ideal, isolated 1D steps that they are ther-
direction slightly off from a high-symmetry one. Such sur- mally rough above zero temperature due to kinks. Using lin-
faces often consist of broad terraces of size separated lsar stability analysis, Bales and Zangwilll] have shown
monatomic steps at distantdérom each other. By changing
the miscut angle, the density of the steps and thosy be
controlled. The physics of MBE growth on such surfaces can
be in the simplest terms described by the following sche-
matic model(see Fig. 1 There is a flux- of adatoms that
impinges upon the terraces. Particles on terraces then diffus:
around with an associated diffusion constBntand may be
desorbed after a time. Upon approaching step edges, par-
ticles can either cross them from above or below, be reflectec
from them, or be incorporated into the growing ledge. At-
tachment is usually characterized by Arrhenius-type rate
constantsk, andk_, which refer to the average rates of

FIG. 1. A schematic view on adatom dynamics on a vicinal
* Author to whom correspondence should be addressed. Electronsurface. The local adatom concentration is denotedtand the
address: alanissi@csc.fi other symbols are explained in the text.
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that in a system with unequal attachment rdtestk_, a (xo,H+2).
straight terrace ledge can become unstable wherk_ . ______________%__(_"0_“1‘{":11 _______

This kind of growth-driven instability is particularly interest- \1/ lower
ing since it may lead to the appearance of “wavy” patterns VT ® terrace
of the ledges. More recently, Salditt and Spdi] have X \L
argued that in addition to the instability, there is a regime for
isolated stepgin the case of strong step-edge barnievhere
the Kardar-Parisi-ZhanKPZ) [15] theory of kinetic rough- ‘ 1
ening is valid. In this regime, the width of the ledge eventu- upper
ally roughens as$* in analogy to many 1D surface deposi- terrace
tion models[2].

In this work, we study the nature of ledge or step-edge FIG. 2. Adatom dynamics in the growth model. Foy<tee,
morphologies, and the question of their roughening behaviogleposition occurs uniformly randomly at all availalfilsmoccupied
in a simple but nontrivial model of isolated steps. This modelsites, while forL,=c, the particles are released from the line at
is in part motivated by the energetics of adatoms d0@®)  Y=H+1. Particles then diffuse on the lower terrace, and drift in the
surfaces with widely separated steps. In the model, we as-Y direction. They become incorporated into the step when they
sume infinitely strong step-edge barriers and biased diffusiofiither land on a top section of the steglong thex axis) or slide
both on the terrace and at the ledge. As expefidd, the down alc_mg the—y d_|rect|on to the nearest kink site, as shpwn
ledge always becomes morphologically linearly unstable duéchematlcal_ly in the flgure._ If a pa_rtlc_le attempts to cross the line at
to the dominance of the one-sided diffusion field. Through d*o-H+1) In the y direction, it is immediately returned from
combination of analytic arguments and computer simula; Xo,H+2) to t.he "T‘e .W'th. new coordinate+x,H+1) Ch(isen
tions, we show that the ledge develops fingerlike structurefrol_rn the spatial d's.tr'bUt'orPLy(X)‘ The_boundary abovg=H

. . L . +1 (not shown is completely reflecting.

and its roughness grows linearly in time, in contrast to the ¥
KPZ type of roughening predicted by Salditt and Spph# the model is measured in terms of the average height of the
in the stable regime. In addition, we study the lateral coarsgrowing step edge. We note that the size of the terrace in the
ening of these fingers and show that it follow$’&® behav- y direction is not fixed, but is chosen in such a way that the
ior. We develop scaling arguments to study the influence oflistance from the highest point of the step(t)
the finite width and finite length of the terrace on the growth.=maxh(x,t)} is kept at a constant value. The corresponding
Finally, we discuss the relevance of these results with respedoundary abovg/=H+L,+1 is completely reflecting and
to experiments on ledge roughening under MBE grop. remains straight. This means that a particlg-atd + L that
takes a step in thg direction is immediately reflected back.

An important feature of the growth model is the deposi-
tion of adatoms on the lower terrace only. This is tantamount
A. Definition of the model to assuming that the step barriers are infinitely high with

The model is defined on a two-dimensional square Iattiaﬁezo so that adatoms are reflected from a downward step

where there is a single growing step. The average directio adino? tc;] an average ﬁargc_lfe a;rrgnt ir}_ thy di:eqtion
of the ledge is along the axis, where the width it, with  oWards the up steps. The drift tedis defined only in an

periodic boundary conditions. Initially at tinte=0 the step average macroscopic sense and will depend on the deposi

aty=0 is completely straight with no thermal fluctuations tion flux and the concentratlon of adatoms on the terrape in
front of the step. Also, since we assume that there is no

present. Growth of the ledge is initiated by depositing a

single particle randomly on an empty, randomly chosen tergesorpnon of adatomsr=), |4 also depends on the veloc-

race site in front of the ledge &t>0. After this, the particle ity of the step, which in turn depends on the terrace length

performs random walk and drifts towards the ledge byjump—,lt‘hy' TS]USM IS, I ?“nc'pfle;'hdeterrg"reg stelf-con3|st§nl'ily by
ing | 4 lattice sites in the-y direction at every random walk . €eo e(; p?rame er? Oth te mo E’ ut v(\j/e rtega;m' as an
step on the average. This means that during each step, tH’édepen ent parameter that may be varied externally.

particle moves in the-y direction with a probability (1/4 th Final(ljy,lwe wguld Iikte to Tertwtignbthatéh(ta grodwth rulgs of
+14)/(1+14), while for the other three directions the prob- € model are in part molivated by adatom dynamics on

gt Si(001) surfaces with widely separated stdi8—21 under
ability is (1/4/(1+1y).

The ledge acts as an absorbing boundary to the particlg(p'f[:.alII MBE Ctond.'t'ol?st'h Namtﬁly,t on 8]01%8d|f2fu5|oré 'St
with the following rules(see Fig. 2 (i) if the particle arrives tsr?j Iséley S;r;sg éfg IES] OHov?/gvere ;[rrég%’ for_thoeagasg of
at the “top” (a section along the direction of the stepitis sin Ie—hpe' htg Ste ’s &m ®01) ’m'crosco ic calculations
incorporated into it and becomes immobi(g) if the particle [18919] ar:g ex eriF;nentEIG 20 indicl;ate thaFt)Ithere isunolsi i
arrives at the “side”(a section along thg direction of the nifi(;ant Sten- E barrier ,Th we make no attemot t gr I
step, it will instantaneously slide down along the ledge to. .. p-edge barrier. 1hus, we make no attempt lo rea
the —y direction until it reaches the corner site, where it is istically model the complicated adatom dynamics in this sys-

. . tem, since the main motivation here is to study the generic
permanently incorporated into the step. These rules guara: . oc of the unstable regime for isolated steps
tee that the set of step heigHts(x,t)} as measured from '
=0 obeys the solid-on-solid restriction, and the step forms a
compact structure.

After the particle has been incorporated into the step, a A straightforward Monte Carlo simulation of the growth
new particle is deposited and the process is repeated. Time nodel proposed here is in principle possible, but very diffi-

II. ANISOTROPIC STEP GROWTH MODEL

B. Simulation algorithm for the model
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cult for large values of., and small drifts. This is because 0.8 ——— T
particles landing on the terrace may wander arbitrarily far
from the step edge, and thus the time for a particle to become
incorporated into a growing step may become very large. 0.6
This problem can be solved by considering the properties of
2D random walkers on a finite or semi-infinite plane. For
such cases, it is possible to calculate analytically the spatial
and temporal probability distributions for the walkers. The
idea then is that for particles that initially land on the terrace
with y>H+1 (which is always the case ik, =), the
simulation can be started by releasing them from an imagi-
nary line that runs along the direction just one lattice site
above the highest step, i.e.,yg=H+1 (see Fig. 2 If the
particle crosses the line again in they direction while per-
;Ogvrc;n%ggpd(jiggewgrilg’sgésflrr(;]rrr??r?lea;e;i;rr(fglrjiggds:goagavlvg?sﬁ'i- FIG. 3. Probability distributionP.(x) for the return position
) . X ) . with L,=10" andL,=cc. The drift parametety=1, 1/2, 1/4, 1/8,
bution, which will be denved_be_low. In the Append|x We 116 and O(from top to bottom ax=0). In the limit |, the
also calculate the mean arrivdirst passagetime of a

. . distribution approaches & function.
walker and indeed show that this time becomes very large PP

for small values of 4 and largeL , . ~ >
More specifically, to implement the simulation algorithm P..(k)=a—cosk—y(a—cosk)“—b. ®)

described above, we need to calculate the spatial probability . . .

distribution functionP ,(x), which is used to obtain the In Fig. 3 we show the behavior df, (x) for various

new position for a walker that crosses the ljweH+1 at values OfLy andly. In the continuum limit, the tail of this

any point. In other words, a walker crossing the line being afunction goes ax ™2 for the case of zero drift.

(xo,H+2) with any x, is put back to the new sitex( In practice, we also need the propagator for a periodic

—Xo,H+1) with the probabilityP, ,(x), where we assume system with a finite width., . This is most easily obtained in

for simplicity thatL,= (see Fig. 2 For a discrete walker, the Fourier space by

this function satisfies the recursion relation

o

1 PLuty(¥)= 2 Pry(x+rLy)
PLY(X):E béx’o'f' PLy(X_1)+ PLy(X+1) r=-=

- 1 2m . -
o — 2 = dk eflk(x+er)PLy(k)
— r=—o 27 0
2 PyyIPL-ay) |, (1)
m . 1 < :
— ~ik —ikrLy
wherea=2+2l4 andb=1+4l,. Using the standard Fou- _fo dk e "Py (k)5 — r:z_m et
rier transformation
2m o 1 i 2mn
- S =f dk e WP (k— > 5(k— il )
Puyk= 2 €“PLy(x), ) 0 L= Lx
X=—0
Lx—1
1 . ~ [2mn
we obtain = L— nzo e"(ngk/Lx)pLy(L_) (6)
X = X
~ 1 . .
Py(k)= 2—[b+ e'kPLy(k)+e*'kPLy(k) Numerically, Eq.(6) is easy to implement using the fast-
a Fourier-transform algorithm.
+PLy_1(KPL(K)]. 3
y-1(PLy k] C. Continuum limit of the model
This gives It is relatively straightforward to write down a continuum
description by using the diffusion equatidan electrostatic
Bl (k)= b 4) analogy[23] can also be employedThe probability density
Ly -

of a random Walkeu(F,t) obeys the biased diffusion equa-
tion with a source ternp(r ,t):

2a—2 cosk—Pp,_4(k)’

which must be solved with the initial conditicﬁ’b(k) =1 for

any k. For L, <, the continued fraction expansion of Eg. —V-D-Vu(r,t)+v-Vu(r,t)=p(r,t). 7)

(4) must be solved numerically in general. Even in the zero

drift case the expansion converges rapidly, as discussed in Using the distribution of the biased random walk, we can
the Appendix. In the special case of an infinitely long terracederive expressions for the drift tero= (004) and the diag-
Ly=c°, P_y(k)=P,_1(k), and Eq.(4) gives onal elements of the diffusion tensbe=D ,, (£, 7=X,y) t0
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be vg=—14/(1+1g), and Dy,=1/(4+4l4) and D, =1/(4 25000 T T T
+4l4)+8l4/(4+ 4l 4)%. We note that in the model, diffusion
is always only slightly anisotropic fory>0, andD,,/D, 20000 4

=1/3 for |4— [24]. The source termp in Eqg. (7) is con-
stant over the whole terrace. The boundary conditions are

that for the step edge=0 and for the reflecting boundary = 15000

duldy=0. Also, the arrival probability of a random walker g—

at the step edge is proportional to the normal derivative of 10000 -
the probability fieldu. With zero drift (4=0), Eq. (7) re-

duces to the Poisson equation obeyed by many growth mod- 5000
els (see, e.g., Refd.23,25,26). The present sticking rules
guarantee that the growing step forms a compact structure, in
contrast to the typical diffusion limited aggregation models 0 50 100 150 200
[23]. It is also evident from the stability analysis of Salditt @ x

and Spohri12] (see also Refl11]) that the one-sided diffu-

sion field is highly destabilizing, and the step-edge morphol- 16000 T T T

ogy is always controlled by the instability rather than de-
scribed by the nonlinear KPZ equatifh?].

)

BE

12000 [

IIl. NUMERICAL RESULTS

A. Ledge roughness 8000

h(x,t)

We have performed extensive Monte Carlo simulations of
the model with the algorithm described in Sec. Il. In this 4000
work, we consider the case of finitg only [27]. First, we
discuss results for the roughness of the growing ledge on an

J 1)) I3 ) )

infinitely long terrace =) with a large value oflL, 0 ‘

=10 In this case, after a short initial transient the undula- (b) 0 50 1960 150 200
tions of the ledge grow and fingerlike structures emerge,

separated by deep cracks. The cracks deepen and the fingers 16000

themselves coarsen at the expense of other fingers. In Fig. 4,

we show a sequence of typical successive configurations for

different values ofl;. We find that the widthw(t) of the 12000
interface associated with the ledge follows power law behav-

ior =
_ X 8000 |
w(t)=([h(x,t)—h(H)]?)V*=At1, ®) =
4000
where the brackets and the overbar denote an average over
the configurations and over each finite system, respectively.
The height variablén(x,t) is the column height of the ledge 0
as measured from=0. Numerically, we find that the width © Y 50 100 150 200
w(t) grows linearly withB,;=1.0+=0.01 and its slop&(ly) X
depends on the driffy (Fig. 5). Linear growth can be under-  F|G. 4. Ten consecutive step profiles from the growth model

stood qualitatively, since particles arriving at the vertical secwith L,=10* andL, = att=1000,2000. . . ,10 with the drift ()

tion of the ledge do not contribute significantly to the ledgel ,=1/4, (b) I,=1, and(c) |4=4. Only part of the system is shown.
roughness. The increase in the roughness is mainly due to

particles that stick on top of the columns, and thus the width, time_ In this case, the deposition noise is not relevant and
grows proportional to the total particle number, i.e., ime.iis resyit can be obtained from a deterministic model.

Th_e chang_e in the grqwth rate is also easy to _explaln quali- 4 study the effect of a finite terrace length<o, we
tatively. With small drifts, only the top of the finger grows .6 simulated the model withy=1/4, L =10%, and L

and very few particles reach the bottom of the cracks. With:50 70. 100. 140. 200. and 500. Due,to )t(he fac,:t that inysuch
larger drifts, the probability of reaching the bottom INCreasesgnjte systems the relative proportion of the flux deposited in

and thusw increases more slowlisee also Fig. 4 _ between the fingers increases with time, the widtft)
The value ofg;=1 is consistent with the theory of Elki- eventually saturates to dn-dependent value, but doest

hani and 'ViIIain[28] for a si.mple 1D Zeno model of MBE saturate as a function &f, . We find that the width satisfies
growth with step-edge barriers. Instead of ledges, they COMe scaling ansatz of Family-VicséR,29]:
sider deposition of adatoms on a stepped surface with diffu- T

sion. They show that with strong step-edge barriers, deep
cracks are formed on the surface whose depth grows linearly w(L, ,t)=tX1’Zlf1(Ly/tl’Zl), 9
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\§ 5000
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0 2500 5000 7500 10000 1 00 e i
t 10° 10° 10*
FIG. 5. The step widthv(t) for 1,=1/8, 1/4, 1/2, 1, 2, 4, 8, 16, t

and 32(from top to bottom with L,=10* and Ly=c. The slopeA

as a function of the drifty is shown in the inset. FIG. 7. The finger widttro(t) for I;=1/8, 1/4, 1/2, 1, 2, 4, 8,

16, and 32(from top to bottom with L,=10" and Ly=. The
where the scaling functiof;(x) behaves as dashed line indicates a slope of 1/3.
along the surface of the 1D Zeno model. However, since in
our model there is a real diffusion field surrounding the fin-
f100~1 xx, x<1. (10 gers on the terrace, additionfihger coarsenind30] takes
place as is evident in the configurations of Fig. 4. For a finite
The exponenk, characterizes the surface morphology in system withL,<<oo, this eventually leads to a configuration
1 X P 9 Mwhere there is onIy one finger present. To investigate the
the saturated regima/(L,)~L{*, and the crossover time temporal scaling of the thickness of the fingers, we have
tsar Ly 2 determines where the saturation takes over. Thetudied how the first zero of the Green’s function rat
growth exponent fot<tg, is B1=x1/z;. We find that set- =rg(t),
ting B8;=1, z;=1.00=0.03 collapses our data best to a
single scaling function shown in Fig. 6. We have also ob- (rt)= —E h(x+r,t)h(x,t)— h(t)2 (11)
tained the exponenj, by fitting to the saturated width
w(Ly) and find thaty,=0.96+0.02.

const, x>1,

behaves as a function of time. The behavior gft) should
indicate the existence of a characteristic, time-dependent cor-
relation length in the direction perpendicular to the direction
In our model, diffusion along the ledge is limited by infi- of growth. In Fig. 7 we show(t) for several values of
nitely strong barriers, since the particles can never go arounghenL = 10* andL,=. To a good degree of accuracy, we
corners. This is basically the same effect as step barriefsng thatro(t)~tﬁf W|th the valueB,=0.32+0.01 for drifts
varying from 1/8 to 32. There is, however, a long crossover
10° prrr— ey regime at the beginning of the growth that depends on the
; ] drift, being longer for larger drift values.
It is also interesting to study the scaling of the Green'’s
function. Asymptotically, we expeds(r,t) to scale ag31]

B. Finger coarsening

G(r,t)=t"%Ag, (t~Fm), (12

Whereg|d(x) is a new scaling function associated with the

coarsening process. In Fig. 8 we show scaling of the data for
G(r,t), with a very good data collapse obtained with
B1=1 and 8,=1/3 [32]. It is interesting to note that the
2| - finger coarsening in the present model follows the same
[ ] power law of 1/3 as model B, which describes domain coars-
U ey et ening due to long-range diffusiofid1,33. However, al-
10 10 10 though qualitatively similar, the present scaling function de-
L/t picted in Fig. 8 is quantitatively different from that of model
Y B [33]. The exponent 1/3 also appears in models of noise-
FIG. 6. Scaling functionf, of Eq. (10) for the step width driven coarsening of mounds in 1D surface growth where
w(L, 1) with L,=50, 70, 100, 140, 200, and 500. Good scaling is Slope selection occurs because of step-edge balf28|.
obtamed WIth,Bl 1 andz;=1. The driftl4=1/4 and the lateral The finite-size scaling of is different from that of the
lattice sizel = 10", width w, since for a system with a finite terrace width

w(Ly1)/1
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10 T T T
Nt "S‘QO.S
3 S
& Nl
6] <
pasaal M e | MR T | T
10 10" 10° 10'
L/t
FIG. 8. Scaling functiong|d of Eqg. (13) for G(r,t) with L, ) ) ] ]
=10" andl =1 at ten different times=1000,2000. . . ,1¢}, with FIG. 9. Scaling functiorf; of Eq. (16) for the finger widthr,
B,=1 andB,=1/3 with the terrace lengti., =50, 70, 100, 140, 200, and 500. The
' .

drift 1;=1/4 and the lateral lattice side,=10*, and3,=1/3 and

<e but with Ly =0, the late-time configuration consists of z=1.
one finger only, whose vertical roughnegskeeps on grow-
ing linearly but whose  saturates. This introduces a new tained another estimate of the new saturation expoggbly
exponentz, that controls the saturation of in thex direc-  estimating the saturated widtl(L,) and indeed verify that
tion. On the other hand, fdr,=~ andL,<e, bothw andg  y3=0.34+0.02.
saturate, and their saturation must be characterized by the
same exponertt; in Eq. (9). Thus, for the general case of
both L,,L, <, we expect the following scaling form to IV. SUMMARY AND CONCLUSIONS
hold:
In summary, in this work we have introduced and exam-
Ly Ly ined a very simple model for the growth of an isolated step
Fo(Lx,Ly,t)=t#f, ez (13 with infinitely strong step-edge barriers. The destabilizing
effect of the one-sided biased diffusion field coupled with
We will not study the whole scaling functidi(x,y) here  strongly anisotropic adatom dynamics makes the ledge mor-
but consider the effects of a finitg, andL, separately34]. ~ Phologically unstable, with fingerlike structures developing
For L,=2, we can again write down the Family-Viscek sepa_rated by deep cracks. After an_|n|t|al early-time transient
form as the fingers coarsen @83 and the width of the ledge grows
linearly. For an infinitely wide and long terrace, the fingers
Fo(Ly,t)=tX2/22f,(L, /tY%), (14  eventually become needlelike. We have also studied the
finite-size scaling of both the coarsening and the width of the
where nowg,=y,/z,, and the scaling functiofi, has the ledge in detail, and determined the corresponding scaling
same limits asf,, but now with a new roughness exponent exponents.
x2- We have simulated the model with= 20, 50, 100, and Recently, Pierre-Louigt al. [14] have considered in de-
200 using the drifi y=1. Because of the single finger final tail a more realistic model of step train growth in the case of
configuration, there are large fluctuations in the data and thugeak desorption, and one-side attachment. As in the present
we have determined the saturation expongnby estimating  case, they find that the step morphology is linearly unstable,
the saturated widthy(L,) directly for various values of,.  but now the individual step widths growt/2, with the steps
From the data, our best estimateyis=1.02+0.01, i.e., the “locked in” together. In this regime, there is no step coars-
width of the final finger grows as the horizontal system size€ning, either. Thus, we expect our model to be relevant only

Together withg,=0.33 this implies thaz,=3.0. for the case where the steps are well isolated, and detach-
In the case of a finité,, we expect that the scaling form ment from step edges can be neglected.
satisfies Experimentally, growth of steps on slightly miscut
Si(001) surfaces has been studied, with the claimed result
ro(Ly,t)=tx3/af (L, /tH), (15)  that the step roughening is consistent with the KPZ predic-

tion [35]. However, at least superficially the steps depicted in
where 8, must now satisfy the relatio, = x3/z;, with x5 Ref.[35] appear to develop fingerlike structures separated by
being another new roughness exponent. The limits;aind  deep grooves characteristic of the unstable regime studied
f, are again of the same form. By using system sizgs here and in Ref[14]. It would be interesting to carry out
50, 70, 100, 140, 200, and 500 with the diift=1/4, our more systematic studies of roughening of widely spaced
data collapse to the scaling form shown in Fig. 9 with  steps on semicondutor surfaces to characterize the nature of
=0.33+0.01 andz;=1.00+0.03. Moreover, we have ob- the instability.
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Piy(w)= 2 e 'Pyy(1) (A2)
10 _ - .
we obtain the characteristic function as
10*
107 PLy(o) i (A3)
w)= - = ,
L 2ae°—2-P, 1(w)
. 10° _
% 10" which can be solved with the initial valu®y(w)=1. Again,
P y(w)=PLy_1(w) whenL,—~% and P.(») can be ob-
10° tained. The average arrival time is proportional to the first
0 derivative of the characteristic function at=0 by
107
oo e °” dP()
0 50 100 tar= >, tP(1)=i (
L t=1 do w=0
'y
FIG. 10. Root mean square deviatidnof the propagatoP,, I~:’Ey(o)  dP,q(w)
from P., with L,= 10" for I,=0, 1/16, 1/8, 1/4, and 4rom top to I 2ia— do
bottom), shown as a function of the distantg to the reflecting ®=0
boundary. ~
oundary dPLy(w) . Ly [q\n
=— =—2ia), |-
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1
1+ -

(Ad)
g

1
1_(1+4|d)Ly)

when 14>0. In the infinite terrace limit I, —~), t;,=1
APPENDIX +1/4, while for 14=0 it is easy to show that,,=4L, .

In this appendix, we calculate explicitly the average ar-Thus, the return time quickly becomes prohibitively large for
rival time t,,, of a walker to demonstrate the need to use théarge systems and ;mall \./alues. O.f the drift, making brute-
present algorithm. We will also discuss the convergence oforce_Monte Carlo simulations difficult. On the other hand,
the probability distribution for finite terraces withy<«. To or drlfj[s larger than unity, no_3|gn|f|cant reduc_tlon in com-
begin with, the distribution for the number of steps or thePUter time can be obtained with the new algorithm.

distribution of the first passage tinfe (t), can be calcu- Fi.nallly , 10 estimate the, convergence .Of. the probapility
lated similar to the spatial distribution of E€L) by the re- distributionP ,(x) towards its asymptotic limit as a function

cursion Qf the terrace length, for anyL,, we can define the devia-
tion d by
1 & L1 2
Py(t)=52 > 5ts,1( bJs ot 2PLy(S) 2 _1 B N\ =5 n
2a & d2(Ly,Ly,lg) ™ HZO Py ool P.. ENIE
i (AS5)
+u:1 PLy(s=UWPLy-a(u) |- (A1) assuming a periodic system in tkalirection. In Fig. 10, we
show the deviation for various values of the drift as a func-
Using the temporal Fourier transform tion of L.
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