1,775 research outputs found

    Oligosaccharide model of the vascular endothelial glycocalyx in physiological flow

    Get PDF
    Experiments have consistently revealed the pivotal role of the endothelial glycocalyx layer in vasoregulation and the layer’s contribution to mechanotransduction pathways. However, the exact mechanism by which the glycocalyx mediates fluid shear stress remains elusive. This study employs atomic-scale molecular simulations with the aim of investigating the conformational and orientation properties of highly flexible oligosaccharide components of the glycocalyx and their suitability as transduction molecules under hydrodynamic loading. Fluid flow was shown to have nearly no effect on the conformation populations explored by the oligosaccharide, in comparison with static (diffusion) conditions. However, the glycan exhibited a significant orientation change, when compared to simple diffusion, aligning itself with the flow direction. It is the tethered end of the glycan, an asparagine amino acid, which experienced conformational changes as a result of this flow-induced bias. Our results suggest that shear flow through the layer can have an impact on the conformational properties of saccharide-decorated transmembrane proteins, thus acting as a mechanosensor

    Nonlinear Volatility of River Flux Fluctuations

    Full text link
    We study the spectral properties of the magnitudes of river flux increments, the volatility. The volatility series exhibits (i) strong seasonal periodicity and (ii) strongly power-law correlations for time scales less than one year. We test the nonlinear properties of the river flux increment series by randomizing its Fourier phases and find that the surrogate volatility series (i) has almost no seasonal periodicity and (ii) is weakly correlated for time scales less than one year. We quantify the degree of nonlinearity by measuring (i) the amplitude of the power spectrum at the seasonal peak and (ii) the correlation power-law exponent of the volatility series.Comment: 5 revtex pages, 6 page

    Troubles musculo-squelettiques : rôles des médecins-conseils et relations interprofessionnelles

    Get PDF
    INTRODUCTION: Musculoskeletal disorders (MSD) were responsible for 9.7 million days of sick leave in 2010 in France. They are also a leading cause of occupational exclusion. The objective was to study the role of medical advisers (Mas) in the care of patients with MSD and their interactions with general practitioners (GPs) and occupational health physicians (OPs). METHODS: We performed a qualitative study with semi-structured interviews with medical advisers from the Brittany region. Semistructured interviews were double-coded and were submitted to thematic analysis. RESULTS: Nine interviews were conducted with MAs from the general regime, agricultural regime, and independent workers regime. MAs described an increase in MSD, especially with complex forms. They explained that their activity was not limited to control, but that they also had an important role in limiting occupational exclusion. It is important to anticipate difficulties related to return to work in this setting. They reported contrasted but necessary relations with GPs who are at the centre of care. Return to work may require negotiation with OPs. CONCLUSION: Relations between MAs and GPs are partly based on control of prescriptions, which can create a climate of suspicion. Emphasizing the fight against occupational exclusion can provide new light on the role of MAs. Improving relations between MAs and GPs can be achieved by a better understanding of their respective roles

    Direct measurements of the energy flux due to chemical reactions at the surface of a silicon sample interacting with a SF6 plasma

    Full text link
    Energy exchanges due to chemical reactions between a silicon surface and a SF6 plasma were directly measured using a heat flux microsensor (HFM). The energy flux evolution was compared with those obtained when only few reactions occur at the surface to show the part of chemical reactions. At 800 W, the measured energy flux due to chemical reactions is estimated at about 7 W.cm\^{-2} against 0.4 W.cm\^{-2} for ion bombardment and other contributions. Time evolution of the HFM signal is also studied. The molar enthalpy of the reaction giving SiF4 molecules was evaluated and is consistent with values given in literature.Comment: 3 page

    Cloning and expression of Geotrichum candidum lipase II gene in yeast. Probing of the enzyme active site by site-directed mutagenesis.

    Get PDF
    The three-dimensional structure of lipase II of Geotrichum candidum strain ATCC34614 (GCL II) has provided insights with respect to the nature of the catalytic machinery of lipases. To support these structural observations, we have carried out an analysis of GCL II by mutagenesis. The gene encoding lipase II of Geotrichum candidum strain ATCC34614 (GCL II) was amplified using the polymerase chain reaction, cloned, and sequenced. The intronless lipase gene was expressed and secreted from Saccharomyces cerevisiae at approximately 5 mg/liter of culture. Recombinant GCL II was purified by immunoaffinity chromatography and characterized using a combination of substrates and independent analytical methods. The recombinant enzyme and the enzyme isolated from its natural source have comparable specific activities against triolein of about 1000 mumol of oleic acid released/min/mg of protein. The putative catalytic triad Ser217-His463-Glu354 was probed by site-directed mutagenesis. The substitution of Ser217 by either Cys or Thr and of His463 by Ala led to a complete elimination of the activity against both triolein and tributyrin. Substitution of Glu354 by either Ser, Ala or Gln renders the enzyme inactive and also perturbs the enzyme stability. However, the enzyme with the conservative replacement Glu354 Asp is stable and displays only a small decrease of triolein activity but a 10-fold decrease in activity against tributyrin. There was no appreciable difference in esterase activity between the native, recombinant wild type, and Glu354 Asp mutant. These results confirm that the triad formed by Ser217-Glu354-His463 is essential for catalytic activity. They also show that the active site of GCL II is more tolerant to a conservative change of the carboxylic side chain within the triad than are other hydrolases with similar catalytic triads

    Labyrinthine Turing Pattern Formation in the Cerebral Cortex

    Get PDF
    I propose that the labyrinthine patterns of the cortices of mammalian brains may be formed by a Turing instability of interacting axonal guidance species acting together with the mechanical strain imposed by the interconnecting axons.Comment: See home page http://lec.ugr.es/~julya

    Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing.

    Get PDF
    The precursor of the cysteine protease papain has been expressed and secreted as propapain from insect cells infected with a recombinant baculovirus expressing a synthetic gene coding for prepropapain. This 39-kDa secreted propapain zymogen molecule is glycosylated and can be processed in vitro into an enzymatically active authentic papain molecule of 24.5 kDa (Vernet, T., Tessier, D.C., Richardson, C., Laliberte, F., Khouri, H. E., Bell, A. W., Storer, A. C., and Thomas, D. Y. (1990) J. Biol. Chem. 265, 16661-16666). Recombinant propapain was stabilized with Hg2+ and purified to homogeneity using affinity chromatography, gel filtration, and ion-exchange chromatographic procedures. The maximum rate of processing in vitro was achieved at approximately pH 4.0, at a temperature of 65 degrees C and under reducing conditions. Precursor processing is inhibited by a variety of reversible and irreversible cysteine protease inhibitors but not by specific inhibitors of serine, metallo or acid proteases. Replacement by site-directed mutagenesis of the active site cysteine with a serine at position 25 also prevents processing. The inhibitor 125I-N-(2S,3S)-3-trans-hydroxycarbonyloxiran-2-carbonyl-L-tyrosine benzyl ester covalently labeled the wild type papain precursor, but not the C25S mutant, indicating that the active site is accessible to the inhibitor and is in a native conformation within the precursor. Based on biochemical and kinetic analyses of the activation and processing of propapain we have shown that the papain precursor is capable of autoproteolytic cleavage (intramolecular). Once free papain is released processing can then occur in trans (intermolecular)

    Secretion of functional papain precursor from insect cells. Requirement for N-glycosylation of the pro-region.

    Get PDF
    The synthetic gene coding for the precursor of the cysteine protease papain (EC 3.4.22.2) has been expressed using the baculovirus/insect cell system. The prepropapain gene was cloned into the transfer vector IpDC125 behind the polyhedrin promoter. The recombinant construct was then incorporated by homologous recombination into the Autographa californiaca nuclear polyhedrosis virus genome. The host Spodoptera frugiperda Sf9 cells infected with the recombinant baculovirus secrete an enzymatically inactive N-glycosylated papain precursor. This zymogen could be activated in vitro to yield about 400 nmol of active papain per liter of culture. The recombinant active mature papain was enzymatically indistinguishable from natural papain but the precursor was not processed to the same amino acid residue. The insect cells also accumulated prepropapain and glycosylated propapain intracellularly. This accumulation was an indication that there are rate-limiting steps in the secretion of proteins from insect cells in this expression system. Characterization of mutants of the precursor has shown that entry into the secretory pathway and addition of carbohydrate are prerequisite conditions for the production and secretion of functional propapain

    Computing prime factors with a Josephson phase qubit quantum processor

    Full text link
    A quantum processor (QuP) can be used to exploit quantum mechanics to find the prime factors of composite numbers[1]. Compiled versions of Shor's algorithm have been demonstrated on ensemble quantum systems[2] and photonic systems[3-5], however this has yet to be shown using solid state quantum bits (qubits). Two advantages of superconducting qubit architectures are the use of conventional microfabrication techniques, which allow straightforward scaling to large numbers of qubits, and a toolkit of circuit elements that can be used to engineer a variety of qubit types and interactions[6, 7]. Using a number of recent qubit control and hardware advances [7-13], here we demonstrate a nine-quantum-element solid-state QuP and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produces coherent interactions between five qubits and verify bi- and tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In the final experiment, we run a three-qubit compiled version of Shor's algorithm to factor the number 15, and successfully find the prime factors 48% of the time. Improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms.Comment: 5 pages, 3 figure
    • …
    corecore