178 research outputs found
Microwave magnetoplasmon absorption by a 2DEG stripe
Microwave absorption by a high mobility 2DEG has been investigated
experimentally using sensitive Electron Paramagnetic Resonance cavity
technique. It is found that MW absorption spectra are chiefly governed by
confined magnetoplasmon excitations in a 2DEG stripe. Spectra of the 2D
magnetoplasmons are studied as a function of magnetic field, MW frequency and
carrier density. The electron concentration is tuned by illumination and
monitored using optical photoluminescence technique.Comment: to be published in International Journal of Modern Physics
Improvements in diagnosis have changed the incidence of histological types in advanced gastric cancer.
The data on 912 patients with early cancer and 1245 with advanced cancer who were seen between 1971 and 1990 were compared. The incidence of undifferentiated-type cancer increased significantly in patients with advanced gastric cancer, but not in patients with early gastric cancer. When the histological types were compared with regard to sex, age and location in patients with early gastric cancer the undifferentiated type was found to increase only in males, while in patients with advanced gastric cancer the undifferentiated type increased in both sexes as well as in younger patients and in both the upper and middle third of the stomach. These differences in the trends between early and advanced cancers are probably due to the different degrees of diagnostic accuracy for the early detection of histological types
Nuclear Spins in a Nanoscale Device for Quantum Information Processing
Coherent oscillations between any two levels from four nuclear spin states of
I=3/2 have been demonstrated in a nanometre-scale NMR semiconductor device,
where nuclear spins are all-electrically controlled. Using this device, we
discuss quantum logic operations on two fictitious qubits of the I=3/2 system,
and propose a quantum state tomography scheme based on the measurement of
longitudinal magnetization, .Comment: 5 pages, 4 figure
Simultaneous Excitation of Spins and Pseudospins in the Bilayer Quantum Hall State
The tilting angular dependence of the energy gap was measured in the bilayer
quantum Hall state at the Landau level filling by changing the density
imbalance between the two layers. The observed gap behavior shows a continuous
transformation from the bilayer balanced density state to the monolayer state.
Even a sample with 33 K tunneling gap shows the same activation energy anomaly
reported by Murphy {\it et al.}. We discuss a possible relation between our
experimental results and the quantum Hall ferromagnet of spins and pseudospins.Comment: 4 pages, 4 figure
Electrically-Controlled Nuclear Spin Polarization and Relaxation by Quantum-Hall states
We investigate interactions between electrons and nuclear spins by using the
resistance (Rxx) peak which develops near filling factor n = 2/3 as a probe. By
temporarily tuning n to a different value, ntemp, with a gate, the Rxx peak is
shown to relax quickly on both sides of ntemp = 1. This is due to enhanced
nuclear spin relaxation by Skyrmions, and demonstrates the dominant role of
nuclear spin in the transport anomaly near n = 2/3. We also observe an
additional enhancement in the nuclear spin relaxation around n = 1/2 and 3/2,
which suggests a Fermi sea of partially-polarized composite fermions.Comment: 6 pages, 3 figure
LEMUR: Large European Module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission
Understanding the solar outer atmosphere requires concerted, simultaneous
solar observations from the visible to the vacuum ultraviolet (VUV) and soft
X-rays, at high spatial resolution (between 0.1" and 0.3"), at high temporal
resolution (on the order of 10 s, i.e., the time scale of chromospheric
dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the
chromosphere to the flaring corona), and the capability of measuring magnetic
fields through spectropolarimetry at visible and near-infrared wavelengths.
Simultaneous spectroscopic measurements sampling the entire temperature range
are particularly important.
These requirements are fulfilled by the Japanese Solar-C mission (Plan B),
composed of a spacecraft in a geosynchronous orbit with a payload providing a
significant improvement of imaging and spectropolarimetric capabilities in the
UV, visible, and near-infrared with respect to what is available today and
foreseen in the near future.
The Large European Module for solar Ultraviolet Research (LEMUR), described
in this paper, is a large VUV telescope feeding a scientific payload of
high-resolution imaging spectrographs and cameras. LEMUR consists of two major
components: a VUV solar telescope with a 30 cm diameter mirror and a focal
length of 3.6 m, and a focal-plane package composed of VUV spectrometers
covering six carefully chosen wavelength ranges between 17 and 127 nm. The
LEMUR slit covers 280" on the Sun with 0.14" per pixel sampling. In addition,
LEMUR is capable of measuring mass flows velocities (line shifts) down to 2
km/s or better.
LEMUR has been proposed to ESA as the European contribution to the Solar C
mission.Comment: 35 pages, 14 figures. To appear on Experimental Astronom
Impaired chemotaxis and cell adhesion due to decrease in several cell-surface receptors in cathepsin E-deficient macrophages.
Cathepsin E is an endo-lysosomal aspartic proteinase exclusively present in immune system cells. Previous studies have shown that cathepsin E-deficient (CatE(-/-)) mice display aberrant immune responses such as atopic dermatitis and higher susceptibility to bacterial infection. However, the mechanisms underlying abnormal immune responses induced by cathepsin E deficiency are still unclear. In this study, we found that the cell-surface levels of chemotactic receptors, including chemokine receptor (CCR)-2 and N-formyl peptide receptors (FPRs), were clearly diminished in CatE(-/-)macrophages compared with those in wild-type cells. Consistently, chemotaxis of CatE(-/-)macrophages to MCP-1 and N-formyl-methionyl-leucyl-phenylalanine was also decreased. Similar to the chemotactic receptors, the surface expressions of the adhesion receptors CD18 (integrin beta(2)) and CD 29 (integrin beta(1)) in CatE(-/-) macrophages were significantly decreased, thereby reducing cell attachment of CatE(-/-) macrophages. These results indicate that the defects in chemotaxis and cell adhesion are likely to be involved in the imperfect function of CatE(-/-)macrophages
Vibrio parahaemolyticus, enterotoxigenic Escherichia coli, enterohemorrhagic Escherichia coli and Vibrio cholerae
This review highlighted the following: (i) pathogenic mechanism of the thermostable direct hemolysin produced by Vibrio parahaemolyticus, especially on its cardiotoxicity, (ii) heat-labile and heat-stable enterotoxins produced by enterotoxigenic Escherichia coli, especially structure–activity relationship of heat-stable enterotoxin, (iii) RNA N-glycosidase activity of Vero toxins (VT1 and VT2) produced by enterohemorrhagic Escherichia coli O157:H7, (iv) discovery of Vibrio cholerae O139, (v) isolation of new variant of Vibrio cholerae O1 El Tor that carries classical ctxB, and production of high concentration of cholera toxin by these strains, and (vi) conversion of viable but nonculturable (VBNC) Vibrio cholerae to culturable state by co-culture with eukaryotic cells
Heparan Sulfate Proteoglycans Mediate Interstitial Flow Mechanotransduction Regulating MMP-13 Expression and Cell Motility via FAK-ERK in 3D Collagen
Interstitial flow directly affects cells that reside in tissues and regulates tissue physiology and pathology by modulating important cellular processes including proliferation, differentiation, and migration. However, the structures that cells utilize to sense interstitial flow in a 3-dimensional (3D) environment have not yet been elucidated. Previously, we have shown that interstitial flow upregulates matrix metalloproteinase (MMP) expression in rat vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts via activation of an ERK1/2-c-Jun pathway, which in turn promotes cell migration in collagen. Herein, we focused on uncovering the flow-induced mechanotransduction mechanism in 3D.Cleavage of rat vascular SMC surface glycocalyx heparan sulfate (HS) chains from proteoglycan (PG) core proteins by heparinase or disruption of HS biosynthesis by silencing N-deacetylase/N-sulfotransferase 1 (NDST1) suppressed interstitial flow-induced ERK1/2 activation, interstitial collagenase (MMP-13) expression, and SMC motility in 3D collagen. Inhibition or knockdown of focal adhesion kinase (FAK) also attenuated or blocked flow-induced ERK1/2 activation, MMP-13 expression, and cell motility. Interstitial flow induced FAK phosphorylation at Tyr925, and this activation was blocked when heparan sulfate proteoglycans (HSPGs) were disrupted. These data suggest that HSPGs mediate interstitial flow-induced mechanotransduction through FAK-ERK. In addition, we show that integrins are crucial for mechanotransduction through HSPGs as they mediate cell spreading and maintain cytoskeletal rigidity.We propose a conceptual mechanotransduction model wherein cell surface glycocalyx HSPGs, in the presence of integrin-mediated cell-matrix adhesions and cytoskeleton organization, sense interstitial flow and activate the FAK-ERK signaling axis, leading to upregulation of MMP expression and cell motility in 3D. This is the first study to describe a flow-induced mechanotransduction mechanism via HSPG-mediated FAK activation in 3D. This study will be of interest in understanding the flow-related mechanobiology in vascular lesion formation, tissue morphogenesis, cancer cell metastasis, and stem cell differentiation in 3D, and also has implications in tissue engineering
- …