265 research outputs found
A quantitative assessment of the ecological value of sycamore maple habitats in the French Alps
La naturalité est un critère important pour l'évaluation de mesures conservatoires des écosystèmes. Au niveau local, une telle évaluation doit être basée sur des indicateurs objectifs et quantifiables sur le terrain. Dans cette étude, nous avons utilisé une méthode multicritères basée sur la différence entre Valeur Naturelle (NV) et Valeur Conservatoire (CV) pour quantifier la valeur écologique des érablaies de versant à érable sycomore (Acer pseudoplatanus L.) par comparaison avec les peuplements mixtes de hêtraie-sapinière-pessière avoisinants. En effet, les naturalistes ainsi que l'Union Européenne considèrent que les érablaies de versant ont une valeur de conservation et de naturalité élevée. Nos résultats montrent que les valeurs naturelle et de conservation sont significativement plus élevées pour l'érablaie que pour la forêt mixte avoisinante et que cette évaluation ne dépend pas de facteurs abiotiques tels que l'altitude ou l'exposition. En fait, la naturalité de structure et de composition des érablaies de versant sont plus fortes que celles des forêts mixtes et permettent de différencier les deux habitats en termes de valeur écologique. Les gestionnaires peuvent facilement utiliser cette méthode pour évaluer la valeur écologique de petits habitats en zone de montagne, ce qui permet d'établir des orientations sylvicoles pour une gestion conservatoire et proche de la nature. / Naturalness is an important criterion in nature conservation assessment. At the stand-level, such assessment must be based on objective and quantifiable indicators measurable in the field. In this study, we used a multi-criterion method based on the difference between a Natural Value(NV) and a Conservation Value (CV) to quantify the ecological value of sycamore maple patches compared to the surrounding mixed forests. Indeed, sycamore habitats are considered of high natural and conservation value both by naturalists and by European institutions. Our results showed that the natural and conservation values were significantly higher for the sycamore forests than for the surrounding mixed forests and that this assessment did not depend on abiotic factors such as elevation or aspect. Actually, naturalness of structure and composition in the sycamore habitats was higher than for mixed forests and allowed us to differentiate between the two habitats. Managers could easily use this method in order to assess the ecological value of small habitats in mountainous regions and to provide guidelines for close-to-nature and conservation-related silviculture.FORET DE MONTAGNE;ECOLOGIE FORESTIERE;EVALUATION;PROTECTION DE LA NATURE;ACER PSEUDOPLATANUS;METHODOLOGIE;HABITAT;VALEUR ECOLOGIQUE;NATURALITE;ALPES FRANCAISES;CHARTREUSE MASSIF;ACER PSEUDOPLATANUS;CHARTREUSE;INDICATORS;NATURALNESS;ECOLOGICAL VALUE
Accurate determination of the chiral indices of individual carbon nanotubes by combining electron diffraction and Resonant Raman spectroscopy
The experimental approach combining high resolution transmission electron microscopy (HRTEM), electron diffraction (ED) and resonant Raman spectroscopy (RRS) on the same free-standing individual carbon nanotubes (CNT) is the most efficient method to determine unambiguously the intrinsic features of the Raman-active phonons. In this paper, we review the main results obtained by the approach regarding the intrinsic features of the phonons of single-walled (SWNT) and double-walled carbon nanotubes (DWNT). First, we detail the different methods to identify the structure of SWNTs and DWNTs from the analysis of their electron diffraction patterns (EDP). In the following, we remind the principal features of the Raman response of SWNTs, unambiguously index-identified by ED. A special attention is devoted to the effect of the inter-layer interaction on the frequencies of the Raman-active phonons in index-identified DWNTs. The information obtained on index-identified SWNT and DWNT allows us to propose Raman criteria, which help identifying CNT when the ED fails to propose a single assignment. The efficiency of the Raman criteria as the complement to the ED information for the index-assignment of a few SWNTs and DWNTs is shown. The same approach to index-assign a triple-walled carbon nanotube (TWNT), by combining ED and RRS information, is reported
Trade‐offs between carbon stocks and biodiversity in European temperate forests
Abstract Policies to mitigate climate change and biodiversity loss often assume that protecting carbon-rich forests provides co-benefits in terms of biodiversity, due to the spatial congruence of carbon stocks and biodiversity at biogeographic scales. However, it remains unclear whether this holds at the scales relevant for management, and particularly large knowledge gaps exist for temperate forests and for taxa other than trees. We built a comprehensive dataset of Central European temperate forest structure and multi-taxonomic diversity (beetles, birds, bryophytes, fungi, lichens, and plants) across 352 plots. We used Boosted Regression Trees (BRTs) to assess the relationship between above-ground live carbon stocks and (a) taxon-specific richness, (b) a unified multidiversity index. We used Threshold Indicator Taxa ANalysis to explore individual species? responses to changing above-ground carbon stocks and to detect change-points in species composition along the carbon-stock gradient. Our results reveal an overall weak and highly variable relationship between richness and carbon stock at the stand scale, both for individual taxonomic groups and for multidiversity. Similarly, the proportion of win-win and trade-off species (i.e., species favored or disadvantaged by increasing carbon stock, respectively) varied substantially across taxa. Win-win species gradually replaced trade-off species with increasing carbon, without clear thresholds along the above-ground carbon gradient, suggesting that community-level surrogates (e.g., richness) might fail to detect critical changes in biodiversity. Collectively, our analyses highlight that leveraging co-benefits between carbon and biodiversity in temperate forest may require stand-scale management that prioritizes either biodiversity or carbon in order to maximize co-benefits at broader scales. Importantly, this contrasts with tropical forests, where climate and biodiversity objectives can be integrated at the stand scale, thus highlighting the need for context-specificity when managing for multiple objectives. Accounting for critical change-points of target taxa can help to deal with this specificity, by defining a safe operating space to manipulate carbon while avoiding biodiversity losses
O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation Study of GLPC Evolution under Irradiation
In this work we present a combined experimental and ab initio simulation investigation concerning the Germanium Lone Pair Center (GLPC), its interaction with molecular oxygen (O2), and evolution under irradiation. First, O2 loading has been applied here to Ge-doped optical fibers to reduce the concentration of GLPC point defects. Next, by means of cathodoluminescence in situ experiments, we found evidence that the 10 keV electron irradiation of the treated optical fibers induces the generation of GLPC centers, while in nonloaded optical fibers, the irradiation causes the bleaching of the pre-existing GLPC. Ab initio calculations were performed to investigate the reaction of the GLPC with molecular oxygen. Such investigations suggested the stability of the dioxagermirane (DIOG) bulk defect, and its back conversion into GLPC with a local release of O2 under irradiation. Furthermore, it is also inferred that a remarkable portion of the O2 passivated GLPC may form Ge tetrahedra connected to peroxy bridges. Such structures may have a larger resistance to the irradiation and not be back converted into GLPC
Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations
The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health
Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests
Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming
Recommended from our members
SEIS: Insight's Seismic Experiment for Internal Structure of Mars.
By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars' surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking's Mars seismic monitoring by a factor of ∼ 2500 at 1 Hz and ∼ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars' surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of M w ∼ 3 at 40 ∘ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.Electronic supplementary materialThe online version of this article (10.1007/s11214-018-0574-6) contains supplementary material, which is available to authorized users
Transformation and tumorigenicity testing of simian cell lines and evaluation of poliovirus replication
The key role of cell cultures in different scientific fields is worldwide recognized, both as in vitro research models alternative to laboratory animals and substrates for biological production. However, many safety concerns rise from the use of animal/human cell lines that may be tumorigenic, leading to potential adverse contaminations in cell-derived biologicals. In order to evaluate the suitability of 13 different cell lines for Poliovirus vaccine production, safety and quality, in vitro/in vivo tumorigenicity and Poliovirus propagation properties were evaluated.
Our results revealed that non-human primate cell lines CYNOM-K1, FRhK-4, 4MBr-5 and 4647 are free of tumorigenic features and represent highly susceptible substrates for attenuated Sabin Poliovirus strains. In particular, FRhK-4 and 4647 cell lines are characterized by a higher in vitro replication, resulting indicated for the use in large-scale production field
Recommended from our members
A Niche-Based Framework to Assess Current Monitoring of European Forest Birds and Guide Indicator Species' Selection
Concern that European forest biodiversity is depleted and declining has provoked widespread efforts to improve management practices. To gauge the success of these actions, appropriate monitoring of forest ecosystems is paramount. Multi-species indicators are frequently used to assess the state of biodiversity and its response to implemented management, but generally applicable and objective methodologies for species' selection are lacking. Here we use a niche-based approach, underpinned by coarse quantification of species' resource use, to objectively select species for inclusion in a pan-European forest bird indicator. We identify both the minimum number of species required to deliver full resource coverage and the most sensitive species' combination, and explore the trade-off between two key characteristics, sensitivity and redundancy, associated with indicators comprising different numbers of species. We compare our indicator to an existing forest bird indicator selected on the basis of expert opinion and show it is more representative of the wider community. We also present alternative indicators for regional and forest type specific monitoring and show that species' choice can have a significant impact on the indicator and consequent projections about the state of the biodiversity it represents. Furthermore, by comparing indicator sets drawn from currently monitored species and the full forest bird community, we identify gaps in the coverage of the current monitoring scheme. We believe that adopting this niche-based framework for species' selection supports the objective development of multi-species indicators and that it has good potential to be extended to a range of habitats and taxa
- …