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Abstract

Policies to mitigate climate change and biodiversity loss often assume that protect-

ing carbon‐rich forests provides co‐benefits in terms of biodiversity, due to the spa-

tial congruence of carbon stocks and biodiversity at biogeographic scales. However,

it remains unclear whether this holds at the scales relevant for management, and

particularly large knowledge gaps exist for temperate forests and for taxa other

than trees. We built a comprehensive dataset of Central European temperate forest

structure and multi‐taxonomic diversity (beetles, birds, bryophytes, fungi, lichens,

and plants) across 352 plots. We used Boosted Regression Trees (BRTs) to assess

the relationship between above‐ground live carbon stocks and (a) taxon‐specific
richness, (b) a unified multidiversity index. We used Threshold Indicator Taxa ANal-

ysis to explore individual species’ responses to changing above‐ground carbon

stocks and to detect change‐points in species composition along the carbon‐stock
gradient. Our results reveal an overall weak and highly variable relationship

between richness and carbon stock at the stand scale, both for individual taxo-

nomic groups and for multidiversity. Similarly, the proportion of win‐win and trade‐
off species (i.e., species favored or disadvantaged by increasing carbon stock,

respectively) varied substantially across taxa. Win‐win species gradually replaced

trade‐off species with increasing carbon, without clear thresholds along the above‐
ground carbon gradient, suggesting that community‐level surrogates (e.g., richness)

might fail to detect critical changes in biodiversity. Collectively, our analyses high-

light that leveraging co‐benefits between carbon and biodiversity in temperate for-

est may require stand‐scale management that prioritizes either biodiversity or

carbon in order to maximize co‐benefits at broader scales. Importantly, this con-

trasts with tropical forests, where climate and biodiversity objectives can be inte-

grated at the stand scale, thus highlighting the need for context‐specificity when

managing for multiple objectives. Accounting for critical change‐points of target

taxa can help to deal with this specificity, by defining a safe operating space to

manipulate carbon while avoiding biodiversity losses.
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1 | INTRODUCTION

Forests play a critical role in mitigating climate change, in addition to

providing many ecosystem services fundamental to human society

(FAO, 2015; MEA, 2005). The estimated amount of carbon stored in

forests globally is almost 900 Pg (=1015 g), with a net global carbon

sink of 1.1 Pg C per year (Pan et al., 2011). Forests also provide

habitat for over half of all known terrestrial plant and animal species

(MEA, 2005), albeit covering only 27% of the Earth's land area (FAO,

2015). Conserving forests and managing them sustainably is there-

fore fundamental for facing two of the most pressing societal chal-

lenges of our times: biodiversity loss and climate change (MEA,

2005).

Global and regional environmental policies, such as the 2015

Paris Agreement, the REDD+ (Reducing Emissions from Deforesta-

tion and forest Degradation) initiative (Gardner et al., 2012) or the

European Forest Strategy (European Commission, 2013), all

acknowledge the critical importance of forests for jointly addressing

biodiversity conservation and climate change mitigation (Busta-

mante et al., 2016; Deere et al., 2018; Ferreira et al., 2018). The

extent to which these two targets can be reached synergistically,

however, is not properly understood (Di Marco, Watson, Currie,

Possingham, & Venter, 2018; Mori, Lertzman, & Gustafsson, 2017;

Pichancourt, Firn, Chadès, & Martin, 2014). If high biodiversity and

carbon stocks coincide spatially, then protecting carbon‐dense for-

ests or managing forests for high carbon stocks would co‐benefit
both environmental policy goals (Di Marco et al., 2018; Reside,

VanDerWal, & Moran, 2017; Strassburg et al., 2010). Otherwise,

this may lead to negative biodiversity outcomes (Boysen, Lucht, &

Gerten, 2017; Bustamante et al., 2016; Ferreira et al., 2018). For

instance, protecting a carbon‐dense forest may reallocate human

pressure to unprotected areas with lower carbon density, but high

biodiversity (Di Marco et al., 2018). Also, shifting from natural veg-

etation to tree plantations to maximize carbon stock leads to biodi-

versity loss (Pichancourt et al., 2014), especially where natural

grasslands or savannahs are afforested (Bremer & Farley, 2010;

Burrascano et al., 2016; Pellegrini, Socolar, Elsen, & Giam, 2016).

Finally, it remains unclear at which spatial scales co‐benefits
between conservation and climate change mitigation should be

sought. More than grain (i.e., spatial resolution), extent (i.e., area

covered) is in this context particularly relevant. Should carbon stor-

age and conservation goals be integrated at the extent of individual

stands (i.e., individual silvicultural units where management takes

place), or at broader scales (e.g., entire landscapes or ecoregions)?

Should co‐benefits be achieved by managing individual stands to

maximize both objectives, or by segregating stands dedicated to

biodiversity from those dedicated to carbon storage within a land-

scape? Understanding the relationship between carbon stocks and

biodiversity, and how it varies across spatial scales, is crucial to

answer these questions (Gardner et al., 2012; Mori et al., 2017;

Reside et al., 2017).

At the extent of an individual forest stand, carbon stock is the

amount of long‐term carbon stored in living biomass, dead organic

matter and soil carbon pools, and is the result of the complex rela-

tionships between forest productivity, disturbance history, and spe-

cies composition (FAO, 2015). Compared to other important forest

carbon pools, above‐ground live carbon stored in wood (hereafter

above‐ground live carbon) can be quantified relatively easily, and is

therefore considered a sustainable forest management indicator

(CBD, 2006; FOREST EUROPE, 2015). Even if living and dead

wood constitute the substrate for many forest species (Hatanaka,

Wright, Loyn, & Mac Nally, 2011; Lassauce, Paillet, Jactel, & Bou-

get, 2011; Stokland, Siitonen, & Jonsson, 2012), the carbon con-

tained in these forest features is only indirectly related to

biodiversity (Hatanaka et al., 2011). Typically based on coarse‐
grained data, recent evidence supports a positive correlation

between above‐ground live carbon and biodiversity at broader

extents (Di Marco et al., 2018; Lecina‐Diaz et al., 2018; Strassburg

et al., 2010). The shape of the carbon‐biodiversity relationship,

however, remains unclear for smaller extents such as individual

landscapes or stands (Ferreira et al., 2018; Pichancourt et al.,

2014). Yet, these extents are the most relevant for decision‐makers

(Deere et al., 2018).

Large uncertainties also remain on how this relationship varies

across biogeographical regions (Di Marco et al., 2018; Lecina‐Diaz

et al., 2018; Potter & Woodall, 2014; Xian et al., 2015). For the

tropics, there is evidence for a positive relationship between biodi-

versity and above‐ground live carbon stocks, both across stands

(Cavanaugh et al., 2014; Deere et al., 2018; Magnago et al.,

2015), and within stands (Sullivan et al., 2017), especially for
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disturbed sites (Ferreira et al., 2018). In temperate forests,

research has traditionally focused on carbon sequestration and

productivity (Huang et al., 2018; Ratcliffe et al., 2017). Although

recent work highlighted the importance of carbon quality, or com-

plexity, for bird biodiversity (Hatanaka et al., 2011; Lecina‐Diaz

et al., 2018), studies relating carbon quantity to biodiversity

remain rare and mostly refer to tree diversity only (Potter &

Woodall, 2014; Xian et al., 2015).

The carbon–biodiversity relationship may also vary across taxo-

nomic groups (Di Marco et al., 2018; Ferreira et al., 2018; Lecina‐
Diaz et al., 2018). Even in the tropics, most research to date has

focused on either vertebrates (Beaudrot et al., 2016; Deere et al.,

2018; Sollmann et al., 2017), or tree species richness only (Cava-

naugh et al., 2014; Magnago et al., 2015; Sullivan et al., 2017),

while research comparing the fine‐scale carbon–biodiversity rela-

tionship across groups of organisms remains rare (Ferreira et al.,

2018). This is understandable, given the inherent costs of collect-

ing field‐based data for multiple taxonomic groups (Bustamante

et al., 2016). Focusing on trees or vertebrates, however, assumes

that these taxa are good surrogates for overall forest biodiversity

(Lecina‐Diaz et al., 2018), while recent evidence suggests that this

is not generally true (Larrieu et al., 2018; Sabatini et al., 2016; Zil-

liox & Gosselin, 2014). Moreover, even within the same taxonomic

group, different species may relate very differently to carbon

stocks (Edwards et al., 2014; Lindenmayer, Fischer, & Cunningham,

2005; Villard & Jonsson, 2009). Some species may benefit from

increasing carbon stocks (hereinafter called “win‐win species”),

while others, (hereinafter called “trade‐off species”) may be hin-

dered by the environmental conditions associated with carbon‐
dense forests (Ferreira et al., 2018). Splitting the community into

win‐win and trade‐off species, and considering explicitly the

behavior of species of conservation concern, could thus help to

better predict the effect of changing carbon stock on specific

components of biodiversity (Magnago et al., 2015; Sollmann et al.,

2017).

Finally, although the carbon–biodiversity relationship is often

assumed to be linear (Beaudrot et al., 2016; Deere et al., 2018;

Sullivan et al., 2017), thresholds could exist along the carbon

stock gradient, meaning that a slight change in forest carbon

stocks could cause disproportionate biodiversity loss (Evans et al.,

2017; Sasaki, Furukawa, Iwasaki, Seto, & Mori, 2015). Such

thresholds have been identified for a range of anthropogenic gra-

dients (Li, Xu, Zheng, Taube, & Bai, 2017; Magnago et al., 2015;

Sasaki et al., 2015), including carbon stocks in tropical forests

(Ferreira et al., 2018). For temperate forests, however, empirical

evidence is lacking (Evans et al., 2017), especially at the stand

scale (Sasaki et al., 2015). Identifying such thresholds, and under-

standing how they vary across taxa and forest types, would pro-

vide important information on how forest management, including

timber harvesting, might impact biodiversity. This would help to

identify “safe operating spaces” for manipulating forest carbon in

managed forests without triggering undesired biodiversity loss (Vil-

lard & Jonsson, 2009).

Here, we investigated the relationships between the diversity of

six ecological groups (i.e., saproxylic beetles, birds, bryophytes,

wood‐inhabiting fungi, epiphytic lichens, and vascular plants) and car-

bon stock across 22 temperate forest sites in three European coun-

tries. We addressed the following questions:

1. What is the relationship between above‐ground live carbon

stocks and (a) species richness of different taxa, and (b) a single,

unified multidiversity index?

2. How do responses to increasing above‐ground live carbon of

individual species, and the proportion of win‐win and trade‐off
species, vary across taxonomic groups and forest types?

3. Are there community‐level thresholds in species richness or com-

position along carbon stock gradients?

2 | MATERIALS AND METHODS

2.1 | Study sites

Our study area included a network of 352 plots in 22 temperate for-

est sites (ranging from 200 to 400 km2), sampled in six different pro-

jects (Burrascano et al., 2018), and covering a wide latitudinal and

longitudinal range across Europe (Figure 1, Supporting Information

Table S1). The sites covered deciduous forest types that are com-

mon in temperate Europe, including acidophilous oak and oak‐birch
forests (20 plots), mesophytic deciduous forests (84 plots), European

beech (Fagus sylvatica) and montane beech forests (232 plots in

total), as well as thermophilous deciduous forests (16 plots). Forest

type nomenclature follows EEA (2006). Although our dataset cannot

be considered representative of the overall variability of these forest

types, it covers a wide range of structural types (one‐, two‐ and mul-

ti‐layered stands), ages, management histories, and management

regimes, including coppice, shelterwood, group selection and unman-

aged stands, comprising late‐successional phases of the forest suc-

cession gradient. Stands in the Hungarian dataset represent a

gradient in tree species composition, from oak‐ to beech‐dominated

forest, but all sharing similar age (mature, between 70–120 year),

and mesic conditions. The datasets in the Italian and French Alps

contrast pairs of managed and unmanaged stands in similar growing

conditions, as well as ancient and recent forests (i.e., resulting from

afforestation of previous pastures and meadows). Forest stands in

the Cilento National Park were selected as a representative subset

of the most common forest types in the park area, while those in

the Gran Sasso National Park spanned across a range of structural

types but all belonged to beech‐dominated forest types prioritized

for conservation. We report summary statistics of the main struc-

tural characteristics for each forest site in Supporting Information

Table S2 and show the distribution of silvicultural systems across

sites in Supporting Information Figure S1.

Elevation ranged from 150 to 1,700 m a.s.l. and substrates

included sedimentary rocks (limestones, dolomites, marls, and flysch)

in the French and Italian sites, and alluvial gravel mixed with sand

and loess in the Hungarian site. All sites belonged to the temperate
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region: annual mean temperature varied from 5°C in the French Alps

to 14°C in southern Italy. Annual precipitation varied from about

600 mm to about 1,900 mm.

2.2 | Sampling and measuring biodiversity

Multi‐taxonomic data were collected in six different projects (Burras-

cano et al., 2018) using comparable, but not identical sampling pro-

tocols (Supporting Information Table S3 for details). All vascular

plant species were recorded in plots ranging from 314 to 1,256 m2.

Bryophytes were sampled on different substrates (standing trees,

deadwood, rocks, and ground) while only epiphytic lichens and

wood‐inhabiting fungi were considered. Birds were sampled using

point‐counts or area search techniques. Saproxylic beetles were sam-

pled using window‐flight interception traps, emerging traps, and

Winkler extractors. Only presence–absence data were available for

birds, bryophytes, fungi, and lichens, while abundance data were

available for plants (percentage cover) and beetles (number of

trapped individuals). Not all six taxonomic groups were sampled in

every plot, returning a total of 1,533 (=taxonomic group × plot) com-

binations. We fixed nomenclature inconsistencies in the species lists

based on up‐to‐date checklists (Supporting Information Table S3).

We derived the association of species to forest or open habitat for

802 out of 1,102 (72%) species of birds, bryophytes, lichens, and

plants from IUCN (2018) and Schmidt, Kriebitzsch, and Ewald (2011).

To control for varying sampling efforts across sites, we calculated

for each plot the scaled richness of each taxonomic group, that is,

the ratio between the richness observed in the plot (alpha diversity)

and the species pool size of that taxonomic group in a given site.

Species pool size was estimated as the asymptotic species richness

based on sample‐based rarefaction and extrapolation curves (Colwell

et al., 2012) using the Chao2 estimator in the R package iNext

(Hsieh, Ma, & Chao, 2016). This approach also returns a measure of

sampling completeness, which we compared across sites and taxo-

nomic groups. We then calculated the average scaled richness across

taxonomic groups to obtain a single measure of the diversity of all

taxa we sampled, hereafter referred to as multidiversity (Allan et al.,

2014). Multidiversity ranges between 0 and 1, with multidiversity of

1 meaning that a plot hosts all species contained in the species pool

of a site. Multidiversity has the advantage of being comparable

across sites, whatever the sampling effort and the species pool (both

at the taxa and the site levels). To assess the robustness of our

results to this scaling procedure, we also ran the analyses after scal-

ing the species richness of a taxonomic group in a plot by the total

number of species observed (rather than estimated via extrapolation

curves) in the corresponding site for that taxonomic group. Neither

of the two approaches are perfect, but provide complementary infor-

mation. While the first approach allows controlling for the varying

number of sampling units across sites, the second controls for differ-

ences in sampling design not related to sampling size (e.g., plot area).

2.3 | Forest above‐ground live carbon

Sampling of forest structure is described in detail in Burrascano,

Sabatini, and Blasi, (2011), Janssen et al. (2016), Márialigeti, Tinya,

Bidló, and Ódor (2016), Paillet et al., (2015), Sabatini et al., (2016),

F IGURE 1 Distribution of forest sites
in Europe. Pie charts report the relative
proportion of plots in different forest
types (FTs) for each site. FTs follow EEA
(2006). The size of the pie represents the
number of plots in each site. Gray
shadings represent the distribution of
forest in Europe. FT4—acidophilous oak
and oak‐birch forest; FT5—mesophytic
deciduous forest; FT6—European beech
(Fagus sylvatica) and FT7 montane beech
forest; FT8—thermophilous deciduous
forest [Colour figure can be viewed at
wileyonlinelibrary.com]
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and Sitzia et al., (2012), and synthesized in Supporting Information

Table S3. In short, we sampled living trees in plots ranging from 491

to 2,827 m2 in area using a diameter at breast height (DBH) thresh-

old of 10 cm. Height was measured for all the trees or in a sample

of them and calculated successively for the others by means of

height‐diameter log‐log models:

logðhÞ ¼ b0 þ b1 � logðDBHÞ

where h is the tree height, and b0 and b1 are coefficients obtained

empirically for each species in each forest site. We calculated grow-

ing stock (GS, m3/ha) as the sum of the individual volumes of the

trees measured in a plot, scaled to a per hectare basis. Tree volumes

were estimated using regionally calibrated species‐specific allometric

equations, with DBH and height as explanatory variables. Specifi-

cally, we referred to Tabacchi, Di Cosmo, Gasparini, and Morelli

(2011) and Castellani, Scrinzi, Tabacchi, and Tosi (1984) for the Ital-

ian datasets, Sopp and Kolozs (2000) for Hungary, and Algan (1894)

for France (Supporting Information Table S3). Growing stock was

then converted to above‐ground live carbon (AGC, MgC/ha) as AGC

=GS*BEF*WBD/2, where BEFs are biomass expansion factors and

WBDs (g/m3) are the wood basic densities (see Table 2 in Federici,

Vitullo, Tulipano, De Lauretis, & Seufert, 2008).

2.4 | Control variables

Coarse woody debris was sampled in plots ranging from 491 to

1,600 m2 using a diameter threshold of 10 cm. Volume of deadwood

pieces was either calculated using the same allometric equations

used for living trees (for standing or downed dead trees), or approxi-

mating deadwood volume to truncated cones or cylinders, depending

on the data source (Supporting Information Table S3). Since dead-

wood represents an important resource for many wood‐inhabiting
fungi and beetles (Lassauce et al., 2011; Stokland et al., 2012), we

included the ratio between deadwood volume and total live and

dead wood volumes as a control variable. As additional control vari-

ables, we derived two topographic covariates (slope, aspect) from a

30‐m resolution Digital Terrain Model (NASA, 2006), which we then

used to calculate heat load, that is, the heat gain from incoming solar

radiation. Moreover, for each plot, we extracted the value of the 19

bioclimatic variables contained in WorldClim v2.0 (Fick & Hijmans,

2017), based on a 30 arcsec raster resolution (approx. 1 km). To

avoid multicollinearity, we ran a Principal Component (PC) analysis,

and then considered the first four PCs, which collectively accounted

for 93.5% of total variation. After passively projecting the 19 Biocli-

matic variables onto the PC space (function envfit, in the R package

vegan), we interpreted PC1 as a gradient of temperature, PC2 as gra-

dient of seasonality, PC3 as a gradient of isothermality, and PC4 as

a gradient of Mediterranean influence (from winter rain to summer

rain; Supporting Information Table S4). We derived information on

parent material from the European Digital Archive on Soil Maps to

classify plots into three classes: igneous‐metamorphic, sedimentary‐
clastic, sedimentary‐limestone (Panagos, Jones, Bosco, & Kumar,

2011). Finally, we considered forest type as a categorical variable

with four levels: acidophilous oak, mesophytic deciduous, beech

dominated, and thermophilous deciduous. As we lacked detailed

information on past forest management, we assigned each plot to

one of four broad silvicultural systems: shelterwood, coppice with

standards, tree/group selection, or unmanaged (at least since

20 years).

2.5 | Modeling the response of biodiversity to
forest above‐ground C

We used BRTs to assess the relationship between above‐ground live

carbon and the scaled species richness of each taxonomic group as

well as multidiversity. BRTs are non‐parametric models based on

decision trees in a boosting framework that does not require prior

assumptions. BRTs are therefore relatively robust against overfitting,

missing data, and collinearity (Elith, Leathwick, & Hastie, 2008). We

used above‐ground live carbon as explanatory variable, while con-

trolling for the effect of forest structure, silvicultural system, climate,

topography, and soil. After checking for collinearity (Pearson's

r > 0.7), we retained nine control variables: coarse woody debris

ratio, forest type, silvicultural system, bioclimate (four PCs), heat

load, and substrate parent material. We also included forest site and

data source (Supporting Information Table S1), as categorical control

variables to account for remaining unobserved environmental and

methodological differences across sites.

We parametrized the BRTs setting a tree complexity of 5 and a

bag fraction of 0.5 (Elith et al., 2008). We tested different learning

rates (0.5–0.001), and determined the optimal number of trees for

each learning rate using the gbm.step routine provided in the dismo

package (Hijmans, Phillips, Leathwick, & Elith, 2011). We then

selected the parameter combination returning the highest cross‐vali-
dated model fit. We finally calculated the relative importance of each

explanatory variable (i.e., the fraction of times a variable was

selected for splitting a tree in each BRT model, weighted by the

squared model improvement). We evaluated model performance

using tenfold cross‐validation. We explored the relationship between

biodiversity and the explanatory variables using partial dependency

plots, which are the graphical visualizations of the marginal effect of

a given explanatory variable on scaled richness (or multidiversity).

These plots also allow to visually check for non‐linear responses and

possible thresholds. We explored the interactions between explana-

tory variables using the gbm.interactions function in the dismo pack-

age. Finally, we tested whether the relationship between carbon and

biodiversity changes when considering forest and non‐forest species
separately. All analysis was performed in R 3.4.1.

2.6 | Assessment of win‐win and trade‐offs species

We used Threshold Indicator Taxa ANalysis—TITAN (Baker & King,

2010) to identify win‐win and trade‐off species, that is, species that

respectively increase or decrease their abundance and/or frequency

with increasing levels of above‐ground live carbon. TITAN uses bin-

ary partitioning by indicator value (IndVal, Dufrêne & Legendre,
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1997) to identify species‐specific change‐points along an environ-

mental gradient (above‐ground live carbon in our case). Change‐
points are compared to random data permutations to assess their

relevance, taking into account indices of purity (i.e., proportion of

bootstrapped change‐points response directions ‐ positive or nega-

tive ‐ that agree with the observed response) and reliability (i.e., pro-

portion of bootstrapped change points with significant IndVal for

p < 0.05). We evaluated uncertainty in change‐point location based

on the bootstrapped empirical distribution (Baker & King, 2010). To

account for the nested (plots within sites) and unbalanced (different

number of plots per site) nature of our dataset, we modified TITAN's

original bootstrapping approach to randomly select (with replace-

ment) a number of plots per site equal to the number of plots in the

site having the lowest number of plots (if >3, 3 otherwise). We ran

TITAN after pooling all species across taxonomic groups, but sepa-

rately for forest types. We aggregated acidophilous and mesophytic

oak forests (oak‐dominated thereafter), and lowland and montane

beech forests (beech‐dominated forest thereafter) but excluded ther-

mophilous oak forests due to the low sample size (n = 16). We also

checked the conservation status of our win‐win or trade‐off species
using the IUCN red lists (IUCN, 2018) and the r package rredlist (ver-

sion 4.0, Chamberlain, 2017).

TITAN also allows exploring if species‐level change points aggre-

gate to a community‐level threshold, that is, congruent change‐
points across all individual species, which we did separately for

trade‐off and win‐win species. To explore the variability across taxo-

nomic groups in community‐level change‐points, we ran TITAN both

when considering the whole species assemblage, and for each taxo-

nomic group. We considered narrow confidence limits across boot-

strapped replicates as an evidence for a community threshold.

3 | RESULTS

3.1 | Relationships between above‐ground live
carbon and species richness

We inventoried a total of 2,415 species: 79 species of birds, 178

lichens, 230 bryophytes, 615 plants, 620 fungi, and 693 saproxylic

beetles. The average number of species per plot was 94.9 ± 30.8 (s-

tandard deviation) species, and ranged between 11.3 ± 4.16 for birds

and 34 ± 13.4 for plants. The estimated number of species per site

ranged from 34.8 ± 14 for birds to 148 ± 47.7 for plants. Sample‐
based rarefaction and extrapolation curves showed that our sampling

was on average very complete (Supporting Information Figure S2):

the median sampling completeness was 92% (Supporting Information

Table S5).

The relationship between scaled richness and above‐ground live

carbon was overall consistently weak (relative importance between

2.7%–8.1%, Supporting Information Figures S3 and S4), and varied in

direction across taxa (Figure 2). The scaled richness of birds, bryo-

phytes, and fungi increased slightly, but non‐linearly, across the

above‐ground live carbon gradient (~5% absolute increase along the

whole gradient). Most of the increase for birds and bryophytes

occurred between 180–200 MgC/ha and 120–150 MgC/ha, respec-

tively. The richness fraction of fungi increased non‐monotonically

along the above‐ground live carbon gradient, with a first peak at

70 MgC/ha, and a secondary peak at 175 MgC/ha. The richness frac-

tion of plants, instead, showed a ~5% absolute decline (see also Sup-

porting Information Figures S5–S10).
Above‐ground live carbon had a very little relative importance on

multidiversity (1.9%), compared to other control variables especially

site (relative importance 78.2%; Supporting Information Figure S11).

Multidiversity increased by <1% over the whole above‐ground live

carbon gradient (Figure 3). BRT models were effective at modeling

multidiversity and scaled richness (cross‐validated correlation 0.54–
0.84, Supporting Information Table S6), although most of the varia-

tion derived from site‐to‐site differences. Indeed, site was always the

variable having the highest relative importance, across all taxonomic

groups (49.6%–79.4%, Figure S4). Coarse woody debris ratio ranked

as second best variable for beetles, bryophytes, fungi, and multidi-

versity (relative importance of 5.9%, 9.4%, 8.5%, and 5.3%, respec-

tively). Bioclimate was a good predictor of lichen diversity, especially

PC4—Mediterranean influence (relative importance 10.1%) and PC1

—temperature (8%) (Supporting Information Figure S4). For all taxa

but beetles and lichens, the interaction between site and above‐
ground live carbon ranked among the top three most important

interactions.

These results were relatively robust to the scaling criteria used.

When scaling richness by the number of species observed (rather

than estimated) in the respective site, the results were qualitatively

similar, although the cross‐validated correlation was consistently

lower, especially for lichens (Supporting Information Figures S12–
S14, Table S7). Also when considering forest and non‐forest species
separately, the predictive ability of above‐ground carbon remained

limited, and ranged between 2.4% (birds) and 6.6% (plants) for forest

species, and between 3.8% (birds) and 10.9% (plants) for non‐forest
species (Supporting Information Figure S15, Tables S8 and S9). Still,

we observed a much stronger increase in forest species richness of

lichens for increasing carbon, while the response of birds, bryo-

phytes, plants, and multidiversity remained qualitatively similar to

what observed for the full data (Supporting Information Figures

S16–S19).

3.2 | Response of individual species to changes in
above‐ground carbon

The TITAN analyses identified 27 and 75 species as pure and reliable

indicators of above‐ground live carbon (i.e., having a consistent

response in both direction and magnitude across bootstrap repli-

cates), in oak‐ and beech‐dominated forests, respectively, corre-

sponding to 5.3% and 9.0% of the total number of species

(Figure 4). Most of the species‐specific change‐points occurred

between 80–120 MgC/ha, in both forest types (Supporting Informa-

tion Figures S20 and S21). Eleven species (10 plants and one bryo-

phyte) were pure and reliable indicators in both forest types. All

pure and reliable trade‐off indicator species for oak‐dominated
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forests were plants (Supporting Information Figure S20), either tree

species with good dispersal ability (e.g., Sorbus aria, S. domestica,

Acer campestre) or herbs and shrubs associated with forest margins

(e.g., Vicia sepium, Lonicera xylosteum, Rosa arvensis). Win‐win spe-

cies were mostly bryophytes, typically found in shaded conditions

and, secondarily, beetles (Tomicus piniperda, Cryptolestes duplicatus).

Trade‐off species in beech forests were principally plants (22 spe-

cies), beetles (16 species) and secondarily birds (three species) and

fungi (one species, Supporting Information Figure S21). Win‐win

species were mostly plants (14 species) and beetles (11 species).

Those associated with the right end of the above‐ground C gradi-

ent were mostly fungi (Fuscoporia ferruginosa, Stereum rugosum and

Heterobasidion annosum) and beetles (e.g., Pediacus dermestoides,

and Xylechinus pilosus).

Out of the 65 indicator species for which we had information on

habitat preference, 37 were forest species (12 win‐win and 25

trade‐off), and 28 were non‐forest species (8 win‐win and 20 trade‐
off; Supporting Information Table S10). Only 200 out of the 2,384

species we considered were included in the IUCN database, with

conservation status of win‐win and trade‐off species only available

for 18 species, none of which was threatened.

We found a slightly higher number of trade‐off than win‐win

species, both in oak (3.4% vs. 2%) and in beech (4.7% vs. 4.3%,

respectively – Figure 4c). When also considering species not having

a reliable response (i.e., responding consistently across bootstraps,

but being significant indicators at the p < 0.05 level in <95% of

bootstraps) this balanced picture did not change (8.7% trade‐off vs.

7.9% win‐win species in oak‐dominated forests; 11.3% vs. 10.8% in

beech‐dominated forests).

The contribution of individual taxonomic groups varied substan-

tially across forest types. In oak‐dominated forests (Figure 4a), fungi,

lichens, and bryophytes returned a higher proportion of win‐win

than trade‐off species, while for plants, we observed the opposite. In

beech forests, most taxonomic groups had a higher proportion of

trade‐off than win‐win species, with the exception of bryophytes

and beetles (Figure 4b).

3.3 | Community‐level change‐points along above‐
ground live carbon gradients

Aggregating individual species’ responses to infer community‐level
change‐points did not reveal a clear community‐threshold in above‐

F IGURE 2 Partial dependency plots of the relationship between scaled richness and above‐ground live carbon, modeled using Boosted
Regression Trees. Scaled richness represents the fraction of species of the species pool size estimated for a given plot. Ticks on the x‐axis
represent above‐ground live carbon data distribution. For each taxonomic group, we report in parenthesis the relative importance of above‐
ground live carbon in the respective boosted regression tree model [Colour figure can be viewed at wileyonlinelibrary.com]
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ground live carbon across all the taxa (Figure 5). In oak‐dominated

forests, the wide confidence intervals around the community‐level
change‐points suggest that rather than abruptly, trade‐off species

were gradually replaced by win‐win species with increasing above‐
ground live carbon. In beech forests, instead, we observed relatively

sharp community‐level change‐points for trade‐off species across all

taxa (except lichens), which ranged between 81.3 MgC/ha (fungi) and

122.4 MgC/ha (lichens). In both forest types, community‐level
change‐points of win‐win species were more variable than those of

trade‐off species and, at least in beech forests, returned wider confi-

dence intervals (e.g., for plants, fungi, and beetles). Community‐level
change‐points for trade‐off species of different taxa were very simi-

lar across the two forest types, while for win‐win species these were

on average higher in beech compared to oak forests.

4 | DISCUSSION

Can managing forest for carbon storage jointly achieve biodiversity

conservation and climate change mitigation goals? Answering this

question critically depends on better understanding the relationship

between forest carbon stocks and biodiversity for the scales at

which management takes place (Ferreira et al., 2018; Gardner et al.,

2012; Mori et al., 2017). We assembled a large dataset of plot‐level
forest carbon stock and multi‐taxonomical diversity for temperate

forest, where knowledge gaps are largest. We found little evidence

that above‐ground live carbon and species richness in temperate for-

ests are congruent at the extent of individual forest stands, which

contrasts with most of the evidence from the tropics (Sullivan et al.,

2017). For all taxa we investigated, we found that win‐win species

gradually replaced trade‐off species with increasing above‐ground
live carbon levels, changes that biodiversity surrogates (e.g., richness)

would fail to detect. In general, species and community‐level change‐
points were neither congruent, nor equally abrupt across taxa, sug-

gesting that leveraging co‐benefits across taxonomic groups might

be difficult. Overall, our results highlight that in temperate forests it

may not be best to jointly pursue conservation and climate change

mitigation goals at the extent of forest stands. Rather, forest plan-

ners should establish local priorities to leverage potentially higher

co‐benefits at broader extents. Stand‐specific priorities can be estab-

lished by taking into account the taxon‐specific carbon–biodiversity
relationship and the share of win‐win versus trade‐off species to

establish a safe operating space to manipulate above‐ground live car-

bon levels while avoiding undesired biodiversity loss.

Our work provides new insights into the shape, variability, and

context‐specificity of the carbon‐biodiversity relationship, especially

for taxonomic groups that are rarely considered (e.g., fungi, lichens,

saproxylic beetles, and bryophytes). The correlation between carbon

and biodiversity was overall relatively weak and highly variable

across taxonomic groups, and this result was robust when comparing

different standardization techniques accounting for data heterogene-

ity and the unequal sample intensity across sites. While previous

research mostly reported that carbon stocks and biodiversity may

both benefit from the prioritization of the same set of forest stands

(Deere et al., 2018; Magnago et al., 2015; Reside et al., 2017; Sulli-

van et al., 2017), for temperate forests the evidence is still inconclu-

sive and mainly based on tree species only (Lecina‐Diaz et al., 2018;

F IGURE 3 Partial dependency plot of the relationship between
multidiversity and above‐ground live carbon using Boosted
Regression Trees. Multidiversity represents the average of the scaled
richness of different taxonomic groups, when this was scaled on the
estimated species pool size of the respective taxonomic group in the
forest site. Tick marks on the x‐axis represent above‐ground live
carbon data distribution. The relative importance of above‐ground
carbon as an explanatory variable for multidiversity is 1.9% [Colour
figure can be viewed at wileyonlinelibrary.com] F IGURE 4 Proportion of win‐win versus trade‐off species across

taxonomic groups and forest types (sorted for increasing number of
win‐win species). (a) Oak‐dominated forests. (b) Beech‐dominated
forests (c) comparison of the two forest types across all taxonomic
groups. Win‐win*(dark blue, left) and trade‐off* (dark red, right)
species are pure and reliable species. Win‐win (light blue, left) and
trade‐off (orange, right) species are pure but not reliable indicators
[Colour figure can be viewed at wileyonlinelibrary.com]

SABATINI ET AL. | 543

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


Potter & Woodall, 2014; Xian et al., 2015). The contrasting patterns

observed across different taxonomic groups, with larger differences

than between forest and non‐forest species, may explain the weak

relationship between multidiversity and above‐ground live carbon.

On the one hand, carbon‐dense, late‐successional forests represent

better habitat than open forests for many organisms. Birds, for

instance, may benefit from high above‐ground live carbon, especially

in the presence of ecologically complex carbon, such as wide‐branch-
ing canopies, large standing trees, and stem cavities (Hatanaka et al.,

2011; Lecina‐Diaz et al., 2018; Paillet et al., 2018). High above‐
ground live carbon also often correlates with high deadwood levels,

which represents fundamental resources for wood‐inhabiting fungi

or beetles (Lassauce et al., 2011; Stokland et al., 2012). On the other

hand, plant species richness decreased with increasing above‐ground
live carbon stocks, especially when non‐forest species were taken

into account (Supporting Information Figure S17), likely as a conse-

quence of the strong, asymmetrical competition for light exerted by

few tree species on the herb‐layer, which comprises the majority of

plant species in temperate forests (Sabatini, Jiménez‐Alfaro, Burras-
cano, & Blasi, 2014). Furthermore, in our assessment, most variation

occurred across forest sites, rather than along the above‐ground live

carbon gradient. This is in agreement with previous research, which

highlighted the importance of broad‐scale drivers, including macrocli-

mate and the regional species pool, as determinants of forest fine‐
scale biodiversity (Jiménez‐Alfaro et al., 2018; Sullivan et al., 2017).

Forest assemblage composition did change along the above‐
ground live carbon gradient, although species richness and multidi-

versity did not. With increasing above‐ground live carbon, win‐win

species gradually replaced trade‐off species, confirming that what

constitutes suitable habitat conditions differs among species (Linden-

mayer et al., 2005). Both in oak‐ and beech‐dominated forests, the

overall proportion of win‐win species was similar to the proportion

of trade‐off species. This might concur at explaining why both multi-

diversity and scaled richness per taxa were relatively insensitive to

increasing above‐ground live carbon, since neither can discriminate

between colonization and local extinction of species when these

occur simultaneously and gradually in response to shifts in ecological

conditions (Lindenmayer et al., 2005). As observed in tropical forests,

the effect of carbon removal on species richness may be confounded

by the increase in generalist species, so that a special focus on sensi-

tive species, or species of conservation concern is recommended

(Deere et al., 2018; Magnago et al., 2015). With the exception of

plants, we did not find marked increases in non‐forest species for

the low end of the carbon gradient, possibly because we excluded

the earliest successional stages in our analyses. Furthermore, the

conservation status of the vast majority (92%) of species was not

available, especially for understudied taxa (i.e., lichens, fungi and

bryophytes; IUCN, 2018). In the absence of species‐level assess-

ments, identifying win‐win and trade‐off species provides a proxy for

identifying sensitive taxa, and for calibrating biodiversity goals when

managing temperate forests for climate change mitigation.

Community‐level change‐points differed between win‐win and

trade‐off species, as well as across taxa and forest types, suggesting

that a clear ecological threshold along the carbon‐stock gradient may

not exist in temperate forests. When considering trade‐off species,

however, we found a relatively marked decrease between ~80–
120 MgC/ha, and the change‐points of different taxonomic groups

were surprisingly similar across the two forest types. We interpret

this result as the effect of canopy closure (i.e., the phase of forest

succession when the canopies of individual trees overlap), which

reduces light availability, buffers temperature variation, increases rel-

ative humidity, and nearly excludes wind at the forest floor (Franklin

et al., 2002). These ecological changes may determine a shift in the

species composition of the herb‐layer and facilitate forest succession

F IGURE 5 Community‐level change‐points and 90% quantiles along the above‐ground live carbon gradient for different taxonomic groups,
in two forest types. Tick marks on the x‐axis represent above‐ground live carbon data distribution [Colour figure can be viewed at wileyonline
library.com]
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toward the dominance of shade tolerant species, while triggering

bottom‐up cascading effects on the whole trophic network (Kagata

& Ohgushi, 2006). Furthermore, canopy closure kicks off self‐thin-
ning processes, which provide a first pulse of deadwood in early suc-

cessional stands, thus favouring the colonization by saproxylic

species (Lassauce et al., 2011; Stokland et al., 2012). This result sug-

gests that a general pattern may exist in temperate forests and

advises against assuming a linear positive carbon–biodiversity rela-

tionship in conservation actions (Di Marco et al., 2018).

We used a large, multi‐taxonomic dataset collected across a

broad geographical area and environmental gradient, which gives us

confidence on the generality of our results. Still, our analyses do not

come without uncertainty. First, although comprehensive, our data-

set suffers from a lack of detailed information on management and

disturbance history, both of which influence biodiversity and carbon

stock, and possibly their relationship (Paillet et al., 2010). We

accounted for differences in silvicultural systems across plots, but

our reconstruction was coarse, and we cannot exclude that legacies

of past forest management (e.g., coppicing) may still be playing a

role. Second, our results provide indication on the carbon–biodiver-
sity relationship for natural or semi‐natural forests only, that is, self‐
regenerated forests of native species. These forests are particularly

relevant for biodiversity conservation, but in many European coun-

tries they are often replaced with forest plantations composed of

very productive carbon‐sinking species (e.g., Picea abies, Pseudotsuga

menziesii, Eucalyptus spp.) that may show different carbon‐biodiver-
sity relationships (Pichancourt et al., 2014). Finally, our dataset is

heterogeneous and spatially nested in nature. Failing to treat data

nestedness can lead to problems of pseudoreplication and higher

probabilities of type I error. We accounted for nestedness by strati-

fying the bootstrapping procedure when exploring change‐points
through TITAN. This, however, comes at the cost of reducing the

power of the analysis, which means that our analysis might not

detect all the win‐win and trade‐off species. Still, our results were

robust to different standardization techniques (see Supporting Infor-

mation Tables S6 and S7, and Figures S12–S14), which suggests that

data heterogeneity did not confound the overall signal we found.

Our work provides new understanding of how co‐benefits
between biodiversity and carbon storage might be leveraged in tem-

perate forests. Three major implications for management derive from

our results. First, biodiversity and above‐ground live carbon cannot

easily be simultaneously maximized in temperate forests at the

extent of individual stands. Instead of seeking to maximize both

goals at this extent, co‐benefits might be larger for strategies that

seek to maximize them across broader extents, for example by seg-

regating areas dedicated to biodiversity from those dedicated to car-

bon storage (Edwards et al., 2014; Kraus & Krumm, 2013). Forest

planners and managers should carefully evaluate whether to give pri-

ority to biodiversity conservation or other carbon‐related goals, since

maximizing forest carbon stock at the stand scale (e.g., by altering

the number and arrangement of trees via thinning or planting) may

only benefit some elements of biodiversity, while being detrimental

to others. Importantly, the scaling of trade‐offs in temperate forests

when increasing the observational extent thus appears to differ fun-

damentally from tropical forests, at least those under management,

where climate and biodiversity objectives may be effectively inte-

grated at the level of individual stands (Deere et al., 2018; Ferreira

et al, 2018; Magnago et al., 2015).

Second, reconciling biodiversity and carbon objectives requires

planning across multiple scales. This includes assessments of which

arrangement of management types delivers lowest trade‐off or high-
est co‐benefits (Law et al., 2017; Reside et al., 2017), while integrat-

ing stand‐level constraints (Pichancourt et al., 2014). Likewise,

planning at the extent of landscapes is needed to ensure hetero-

geneity in forest developmental stage and structure across stands

(Schall et al., 2018), which should include set‐asides (Bouget et al.,

2014; Ferreira et al., 2018; Hatanaka et al., 2011), to ensure that

trade‐off assessments are robust over time. Encouraging the reten-

tion of blocks of undisturbed forest as a conservation priority within

managed forests may represent an effective option for reconciling

carbon‐storage and conservation goals, while incorporating multiple

environmental goals in forest management (Edwards et al., 2014).

This would allow for the persistence of the full range of both win‐
win and trade‐off species, and therefore maximizing multi‐taxonomic

diversity while optimizing carbon‐stock allocation (Trentanovi, Cam-

pagnaro, Rizzi, & Sitzia, 2018).

Third and finally, our study highlights that rather than relying on

biodiversity surrogates, only an explicit consideration of all taxa of

conservation concern will provide the full picture of how these taxa

respond to the manipulation of forest structure and above‐ground
live carbon stocks in temperate forests (Villard & Jonsson, 2009).
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