339 research outputs found

    Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura

    Get PDF
    The Milandre test site is an ideal karstic aquifer for studying the spatial heterogeneity of groundwater chemistry. Numerous observation points can be sampled: the spring, the underground river and its tributaries, and boreholes at different depths. The main causes of the spatial variability of the chemical parameters are: nature and localisation of the input, the structure of the infiltration zone, chemical reactions (transit time vs. reaction kinetics) and mixing of different waters. Physico-chemical data on springs discharging from the karstic system represent the sum of this spatial heterogeneity. Therefore, it is difficult to interpret the global-chemical response with a simple mixing model of the aquifer subsystems (runoff, matrix reservoir, epikarst). Chemical constituents related to agricultural inputs show important seasonal variations (coefficient of variation approximately 15%) and parameters linked to rainfall (δ18O) and to the aquifer (Ca2+, HCO3 −) present variations of less than 5%. This result indicates the importance of water storage in the epikarstic aquifer for periods of a few month

    IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-γ

    Get PDF
    Tumor-associated macrophages (TAMs), the most abundant immunosuppressive myeloid cells in the tumor microenvironment, exhibit an IL-10highIL-12low profile called M2, opposite to the immunostimulatory M1. We reported that ovarian cancer ascites switched monocyte differentiation into TAM-like cells that exhibit most phenotypic and functional characteristics of TAMs, suggesting that soluble mediators are involved in the differentiation of monocytes into TAM-like cells. We observed that leukemia-inhibitory factor and IL-6, present at high concentrations in ovarian cancer ascites, skew monocyte differentiation into TAM-like cells by increasing macrophage colony-stimulating factor consumption. Moreover, we observed that IFN-γ switches established TAMs into immunostimulatory M1 cells and skews monocyte differentiation from TAM-like cells to M1s. In addition to revealing a new tumor-escape mechanism associated with TAM generation via leukemia-inhibitory factor and IL-6, these findings offer novel therapeutic perspectives to subvert TAM-induced immunosuppression and to improve antitumor immunotherapy efficacy

    Treg depletion followed by intracerebral CpG-ODN injection induce brain tumor rejection

    Get PDF
    Using brain lymphoma model, we demonstrate that immunotherapy combining Treg depletion (using anti-CD25 mAb PC61) followed by intracranial CpG-ODN administration induced tumor rejection in all treated mice and led to the establishment of a memory antitumor immune response in 60% of them. This protective effect was associated with a recruitment of NK cells and, to a lesser extent, of dendritic cells, B cells and T lymphocytes. NK cell depletion abolished the protective effect of the treatment, confirming a major role of NK cells in brain tumor elimination. Each treatment used alone failed to protect brain tumor bearing mice, revealing the therapeutic benefit of combining Treg depletion and local CpG-ODN injection

    A Better Definition of the Kilogram

    Full text link
    This article reviews several recent proposed redefinitions of the kilogram, and compares them with respect to practical realizations, uncertainties (estimated standard deviations), and educational aspects.Comment: 10 pages, no figure

    A Staggered Decameric Assembly of Human C-Reactive Protein Stabilized by Zinc Ions Revealed by X-ray Crystallography

    Get PDF
    Human C-reactive protein (CRP) is an acute phase protein, which harbours both host defence and scavenging properties. In this study, we obtained two new crystal forms of CRP, where CRP forms a symmetric, staggered dimer of pentamers. In one of these structures, obtained in the presence of HIV-1 Tat protein, this dimer of pentamers is stabilized by two zinc ions trapped within a cleft of the effector face of CRP. These two decameric interfaces involve complementary surfaces of CRP pentamers and bury a large area of ~2000 Ã…2 per pentamer, suggesting a biological role of this interface. These two novel decameric interfaces and the involvement of zinc might have important consequences in the understanding of CRP biological functions

    The scavenger receptors SRA-1 and SREC-I cooperate with TLR2 in the recognition of the hepatitis C virus non-structural protein 3 by dendritic cells

    Get PDF
    Backgrounds & AimsThe hepatitis C virus NS3 protein is taken up by myeloid cells in a TLR2-independent manner and activates myeloid cells via TLR2. This study aimed to identify the endocytic receptor(s) involved in the uptake of NS3 by myeloid cells and its relation with TLR2. Methods Inhibitors and transfected cells were used to identify the nature of the NS3-binding receptors expressed by myeloid cells. The cooperation between scavenger receptors (SRs) and TLR2 in the NS3-mediated activation of myeloid cells was evaluated using inhibitors, cells from TLR2−/− mice, and confocal microscopy. The involvement of SRs in NS3 cross-presentation was evaluated in vitro using an NS3-specific human T-cell clone. Results We observed that SRs are the main binding structures for NS3 on myeloid cells and identified the SRs SRA-1 and SREC-I as endocytic receptors for NS3. Moreover, both SRs and TLR2 cooperate in NS3-induced myeloid cell activation. Conclusion This study highlights a central role for SRs in NS3 uptake and cross-presentation, and demonstrates a tightly orchestrated cooperation between signalling and endocytic innate receptors in NS3 recognition

    CCR7 is involved in the migration of neutrophils to lymph nodes

    Get PDF
    Increasing evidence suggests that neutrophils may participate in the regulation of adaptive immune responses, and can reach draining lymph nodes and cross-prime naive T cells. The aim of this study was to identify the mechanism(s) involved in the migration of neutrophils to the draining lymph nodes. We demonstrate that a subpopulation of human and mouse neutrophils express CCR7. CCR7 is rapidly expressed at the membrane upon stimulation. In vitro, stimulated human neutrophils migrate in response to the CCR7 ligands CCL19 and CCL21. In vivo, injection of complete Freund adjuvant induces a rapid recruitment of neutrophils to the lymph nodes in wild-type mice but not in Ccr7−/− mice. Moreover, intradermally injected interleukin-17–and granulocyte-macrophage colony-stimulating factor–stimulated neutrophils from wild-type mice, but not from Ccr7−/− mice, migrate to the draining lymph nodes. These results identify CCR7 as a chemokine receptor involved in the migration of neutrophils to the lymph nodes

    IL-26 Is Overexpressed in Rheumatoid Arthritis and Induces Proinflammatory Cytokine Production and Th17 Cell Generation

    Get PDF
    Interleukin-26 (IL-26), a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by epithelial cells. IL-26 has been also reported overexpressed in Crohn\u27s disease, suggesting that it may be involved in the physiopathology of chronic inflammatory disorders. Here, we have analyzed the expression and role of IL-26 in rheumatoid arthritis (RA), a chronic inflammatory disorder characterized by joint synovial inflammation. We report that the concentrations of IL-26 are higher in the serums of RA patients than of healthy subjects and dramatically elevated in RA synovial fluids compared to RA serums. Immunohistochemistry reveals that synoviolin+ fibroblast-like synoviocytes and CD68+ macrophage-like synoviocytes are the main IL-26-producing cells in RA joints. Fibroblast-like synoviocytes from RA patients constitutively produce IL-26 and this production is upregulated by IL-1-beta and IL-17A. We have therefore investigated the role of IL-26 in the inflammatory process. Results show that IL-26 induces the production of the proinflammatory cytokines IL-1-beta, IL-6, and tumor necrosis factor (TNF)-alpha by human monocytes and also upregulates the expression of numerous chemokines (mainly CCL20). Interestingly, IL-26-stimulated monocytes selectively promote the generation of RORgamma t+ Th17 cells, through IL-1-beta secretion by monocytes. More precisely, IL-26-stimulated monocytes switch non-Th17 committed (IL-23R− or CCR6− CD161−) CD4+ memory T cells into Th17 cells. Finally, synovial fluids from RA patients also induce Th17 cell generation and this effect is reduced after IL-26 depletion. These findings show that IL-26 is constitutively produced by RA synoviocytes, induces proinflammatory cytokine secretion by myeloid cells, and favors Th17 cell generation. IL-26 thereby appears as a novel proinflammatory cytokine, located upstream of the proinflammatory cascade, that may constitute a promising target to treat RA and chronic inflammatory disorders

    The angiotensin II type 2 receptor activates flow-mediated outward remodelling through T cells-dependent interleukin-17 production

    Get PDF
    AIMS: The angiotensin II type 1 receptor (AT1R) through the activation of immune cells plays a key role in arterial inward remodelling and reduced blood flow in cardiovascular disorders. On the other side, flow (shear stress)-mediated outward remodelling (FMR), involved in collateral arteries growth in ischaemic diseases, allows revascularization. We hypothesized that the type 2 receptor (AT2R), described as opposing the effects of AT1R, could be involved in FMR. METHODS AND RESULTS: We studied FMR using a model of ligation of feed arteries supplying collateral pathways in the mouse mesenteric arterial bed in vivo. Seven days after ligation, diameter increased by 30% in high flow (HF) arteries compared with normal flow vessels. FMR was absent in mice lacking AT2R. At Day 2, T lymphocytes expressing AT2R were present preferentially around HF arteries. FMR did not occur in athymic (nude) mice lacking T cells and in mice treated with anti-CD3ε antibodies. AT2R activation induced interleukin-17 production by memory T cells. Treatment of nude mice or AT2R-deficient mice with interleukin-17 restored diameter enlargement in HF arteries. Interleukin-17 increased NO-dependent relaxation and matrix metalloproteinases activity, both important in FMR. Remodelling of feeding arteries in the skin flap model of ischaemia was also absent in AT2R-deficient mice and in anti-interleukin-17-treated mice. Finally, remodelling, absent in 12-month-old mice, was restored by a treatment with the AT2R non-peptidic agonist C21. CONCLUSION:AT2R-dependent interleukin-17 production by T lymphocyte is necessary for collateral artery growth and could represent a new therapeutic target in ischaemic disorders

    Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study

    Get PDF
    <p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p> <p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p> <p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).</p> <p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p&gt
    • …
    corecore