308 research outputs found

    Magnetic domain observation of hydrogenation disproportionation desorption recombination processed Nd-Fe-B powder with a high-resolution Kerr microscope using ultraviolet light

    Get PDF
    A Kerr microscope that uses ultraviolet (UV) light for high-resolution domain observation was built, and the domain structure and magnetization process of hydrogenation disproportionation desorption recombination (HDDR) powder were examined. The UV Kerr microscope could observe nanometer-sized domain patterns. Applying a dc field of 1.0 kOe to HDDR powder at a desorption recombination (DR) time of 12 min produced abrupt wall motion. The pinning force exerted by the grain boundaries is inadequate for producing high coercivity because the Nd-rich phase layers along these boundaries are absent at a DR time of 12 min. For HDDR powder at a DR time greater than 14 min, changing the magnetic field by up to 1.0 kOe produced no observable wall motion. It follows that the high coercivity of HDDR powder is due to domain wall pinning at the grain boundaries

    Dense, Fe-rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?

    Get PDF
    We present observations of two LMC supernova remnants (SNRs), DEM L238 and DEM L249, with the Chandra and XMM-Newton X-ray satellites. Bright central emission, surrounded by a faint shell, is present in both remnants. The central emission has an entirely thermal spectrum dominated by strong Fe L-shell lines, with the deduced Fe abundance in excess of solar and not consistent with the LMC abundance. This Fe overabundance leads to the conclusion that DEM L238 and DEM L249 are remnants of thermonuclear (Type Ia) explosions. The shell emission originates in gas swept up and heated by the blast wave. A standard Sedov analysis implies about 50 solar masses in both swept-up shells, SNR ages between 10,000 and 15,000 yr, low (< 0.05 cm^-3) preshock densities, and subluminous explosions with energies of 3x10^50 ergs. The central Fe-rich supernova ejecta are close to collisional ionization equilibrium. Their presence is unexpected, because standard Type Ia SNR models predict faint ejecta emission with short ionization ages. Both SNRs belong to a previously unrecognized class of Type Ia SNRs characterized by bright interior emission. Denser than expected ejecta and/or a dense circumstellar medium around the progenitors are required to explain the presence of Fe-rich ejecta in these SNRs. Substantial amounts of circumstellar gas are more likely to be present in explosions of more massive Type Ia progenitors. DEM L238, DEM L249, and similar SNRs could be remnants of ``prompt'' Type Ia explosions with young (~100 Myr old) progenitors.Comment: 24 pages, 8 figures, ApJ, in pres

    Supernova Remnants in the Magellanic Clouds. VI. The DEML316 Supernova Remnants

    Full text link
    The DEML316 system contains two shells, both with the characteristic signatures of supernova remnants (SNRs). We analyze Chandra and XMM-Newton data for DEML316, investigating its spatial and spectral X-ray features. Our Chandra observations resolve the structure of the northeastern SNR (Shell A) as a bright inner ring and a set of "arcs" surrounded by fainter diffuse emission. The spectrum is well fit by a thermal plasma model with temperature ~1.4 keV; we do not find significant spectral differences for different regions of this SNR. The southwestern SNR (Shell B) exhibits an irregular X-ray outline, with a brighter interior ring of emission including a bright knot of emission. Overall the emission of the SNR is well described by a thermal plasma of temperature ~0.6 keV. The Bright Knot, however, is spectrally distinct from the rest of the SNR, requiring the addition of a high-energy spectral component consistent with a power-law spectrum of photon index 1.6--1.8. We confirm the findings of Nishiuchi et al. (2001) that the spectra of these shells are notably different, with Shell A requiring a high iron abundance for a good spectral fit, implying a Type Ia origin. We further explicitly compare abundance ratios to model predictions for Type Ia and Type II supernovae. The low ratios for Shell A (O/Fe of 1.5 and Ne/Fe of 0.2) and the high ratios for Shell B (O/Fe of 30--130 and Ne/Fe of 8--16) are consistent with Type Ia and Type II origins, respectively. The difference between the SNR progenitor types casts some doubt on the suggestion that these SNRs are interacting with one another.Comment: Accepted for ApJ v. 635 (December issue

    Observational Constraints on Superbubble X-ray Energy Budgets

    Full text link
    The hot, X-ray-emitting gas in superbubbles imparts energy and enriched material to the interstellar medium (ISM) and generates the hot ionized medium, the ISM's high-temperature component. The evolution of superbubble energy budgets is not well understood, however, and the processes responsible for enhanced X-ray emission in superbubbles remain a matter of debate. We present Chandra ACIS-S observations of two X-ray-bright superbubbles in the Large Magellanic Cloud (LMC), DEM L50 (N186) and DEM L152 (N44), with an emphasis on disentangling the true superbubble X-ray emission from non-related diffuse emission and determining the spatial origin and spectral variation of the X-ray emission. An examination of the superbubble energy budgets shows that on the order of 50% of the X-ray emission comes from regions associated with supernova remnant (SNR) impacts. We find some evidence of mass-loading due to swept-up clouds and metallicity enrichment, but neither mechanism provides a significant contribution to the X-ray luminosities. We also find that one of the superbubbles, DEM L50, is likely not in collisional ionization equilibrium. We compare our observations to the predictions of the standard Weaver et al. model and to 1-D hydrodynamic simulations including cavity supernova impacts on the shell walls. Our observations show that mass-loading due to thermal evaporation from the shell walls and SNR impacts are the dominant source of enhanced X-ray luminosities in superbubbles. These two processes should affect most superbubbles, and their contribution to the X-ray luminosity must be considered when determining the energy available for transport to the ISM.Comment: 25 pages, 11 figures, accepted for publication in Ap

    A Study of the Populations of X-ray Sources in the Small Magellanic Cloud with ASCA

    Get PDF
    The Advanced Satellite for Cosmology and Astrophysics (ASCA) has made multiple observations of the Small Magellanic Cloud (SMC). X-ray mosaic images in the soft (0.7--2.0 keV) and hard (2.0--7.0 keV) bands are separately constructed, and the latter provides the first hard X-ray view of the SMC. We extract 39 sources from the two-band images with a criterion of S/N>5, and conduct timing and spectral analyses for all of these sources. Coherent pulsations are detected from 12 X-ray sources; five of which are new discoveries. Most of the 12 X-ray pulsars are found to exhibit long-term flux variabilities, hence they are likely to be X-ray binary pulsars (XBPs). On the other hand, we classify four supernova remnants (SNRs) as thermal SNRs, because their spectra exhibit emission lines from highly ionized atoms. We find that XBPs and thermal SNRs in the SMC can be clearly separated by their hardness ratio (the ratio of the count rate between the hard and soft bands). Using this empirical grouping, we find many XBP candidates in the SMC, although no pulsations have yet been detected from these sources. Possible implications on the star-formation history and evolution of the SMC are presented by a comparison of the source populations in the SMC and our Galaxy.Comment: 11 pages, 39 Figures, to be published in ApJ Supplement. Tables (body and figures also) are available at http://www-cr.scphys.kyoto-u.ac.jp/member/jun/job

    cDNA display: a novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA–protein fusions

    Get PDF
    We report a robust display technology for the screening of disulfide-rich peptides, based on cDNA–protein fusions, by developing a novel and versatile puromycin-linker DNA. This linker comprises four major portions: a ‘ligation site’ for T4 RNA ligase, a ‘biotin site’ for solid-phase handling, a ‘reverse transcription primer site’ for the efficient and rapid conversion from an unstable mRNA–protein fusion (mRNA display) to a stable mRNA/cDNA–protein fusion (cDNA display) whose cDNA is covalently linked to its encoded protein and a ‘restriction enzyme site’ for the release of a complex from the solid support. This enables not only stabilizing mRNA–protein fusions but also promoting both protein folding and disulfide shuffling reactions. We evaluated the performance of cDNA display in different model systems and demonstrated an enrichment efficiency of 20-fold per selection round. Selection of a 32-residue random library against interleukin-6 receptor generated novel peptides containing multiple disulfide bonds with a unique linkage for its function. The peptides were found to bind with the target in the low nanomolar range. These results show the suitability of our method for in vitro selections of disulfide-rich proteins and other potential applications

    Stress factors and stress management interventions: the heuristic of “bottom up” an update from a systematic review

    Get PDF
    Organizations have increasingly sought to adopt innovative interventions to prevent stress-related issues. In the field of manufacturing, however, the effectiveness of these interventions remains unclear because a systematic and specific review of existing primary evidence has not been undertaken. The present systematic literature review sought to address the foregoing limitation in the literature by summarizing the main source of stress and effectiveness of stress management interventions as grounded in the context of manufacturing. Our review was limited to only randomized clinical trials (RCTs) and quasi-experimental studies and concerned employees from the manufacturing sector. Twenty-two studies on primary, secondary and tertiary interventions across four continents (Asia, Europe, USA and South America) were selected and analyzed in terms of stress factors, methodological properties and outcomes. Most of these were RCT studies (68% Vs 32%) with a majority of secondary interventions (N = 11, 50%), followed by primary (N = 5, 22%), tertiary (N = 3, 13%), and two (9%) mixed interventions. The main outcomes included an improvement of psychological wellbeing, decreased stress reactivity and an increment of general health. There was a predominance of interventions utilizing skills programs and/or cognitive-behavioral techniques. The main source of stress reported related to professional identity, organizational deficiencies, interpersonal conflicts, physical complaints and poor work environment. Taken together, the findings provide important theoretical and practical implications for advancing the study of stress factors and the use of stress management interventions in the workplace. The prerequisite for a successful intervention is to address the real problems experienced by professionals and help them to cope with their difficult situations. The strategy of “bottom-up” offers a potential means of enhancing employees’ health and well-being; however, the most effective means of implementing these interventions needs to be understood better

    The Role of Alpha 6 Integrin in Prostate Cancer Migration and Bone Pain in a Novel Xenograft Model

    Get PDF
    Of the estimated 565,650 people in the U.S. who will die of cancer in 2008, almost all will have metastasis. Breast, prostate, kidney, thyroid and lung cancers metastasize to the bone. Tumor cells reside within the bone using integrin type cell adhesion receptors and elicit incapacitating bone pain and fractures. In particular, metastatic human prostate tumors express and cleave the integrin A6, a receptor for extracellular matrix components of the bone, i.e., laminin 332 and laminin 511. More than 50% of all prostate cancer patients develop severe bone pain during their remaining lifetime. One major goal is to prevent or delay cancer induced bone pain. We used a novel xenograft mouse model to directly determine if bone pain could be prevented by blocking the known cleavage of the A6 integrin adhesion receptor. Human tumor cells expressing either the wildtype or mutated A6 integrin were placed within the living bone matrix and 21 days later, integrin expression was confirmed by RT-PCR, radiographs were collected and behavioral measurements of spontaneous and evoked pain performed. All animals independent of integrin status had indistinguishable tumor burden and developed bone loss 21 days after surgery. A comparison of animals containing the wild type or mutated integrin revealed that tumor cells expressing the mutated integrin resulted in a dramatic decrease in bone loss, unicortical or bicortical fractures and a decrease in the ability of tumor cells to reach the epiphyseal plate of the bone. Further, tumor cells within the bone expressing the integrin mutation prevented cancer induced spontaneous flinching, tactile allodynia, and movement evoked pain. Preventing A6 integrin cleavage on the prostate tumor cell surface decreased the migration of tumor cells within the bone and the onset and degree of bone pain and fractures. These results suggest that strategies for blocking the cleavage of the adhesion receptors on the tumor cell surface can significantly prevent cancer induced bone pain and slow disease progression within the bone. Since integrin cleavage is mediated by Urokinase-type Plasminogen Activator (uPA), further work is warranted to test the efficacy of uPA inhibitors for prevention or delay of cancer induced bone pain
    corecore