2,984 research outputs found

    Retention or defection? Chinese consumers’ decision-making styles for domestic and global brands

    Get PDF
    This study explores consumers’ decision-making in terms of intention to switch to foreign brands from domestic brands when purchasing cell phones and sports shoes. A survey of 584 undergraduates in Guangdong, China, shows that domestic brands retain their low quality-conscious, low fashion-and-recreational-conscious and low price-conscious customers and attract low brand-conscious and high choice-confused buyers from foreign brands. Foreign brands typically retain their consumers who are highly conscious of fashion and recreation and keep and draw customers with low choice confusion. High-price-conscious consumers and those who are highly brand-confused will assess foreign and domestic brands when searching for bargains. Regarding managerial implications, local brands should offer products of high quality at low prices and constantly invest in R&D; foreign brands may expand their customer bases and build interactive brand channels; all companies can retain brand-confused customers with preferential packages and design their marketing strategies based on decision-making styles of their target consumers

    Dye lasing in optically manipulated liquid aerosols

    Get PDF
    We report lasing in airborne, rhodamine B-doped glycerol-water droplets with diameters ranging between 7.7 and 11.0 mu m, which were localized using optical tweezers. While being trapped near the focal point of an infrared laser, the droplets were pumped with a Q-switched green laser. Our experiments revealed nonlinear dependence of the intensity of the droplet whispering gallery modes (WGMs) on the pump laser fluence, indicating dye lasing. The average wavelength of the lasing WGMs could be tuned between 600 and 630 nm by changing the droplet size. These results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium

    Controlled, pulsatile release of thermostabilized inactivated polio vaccine from PLGA-based microspheres

    Get PDF
    Many vaccines, such as the inactivated polio vaccine (IPV), must be administered in several doses for full efficacy. Because patient access is a major challenge for vaccination efforts in developing countries, administering multiple doses per patient is impractical in those areas. Single-administration vaccines would greatly improve efforts to vaccinate populations in Third World countries, and the World Health Organization (WHO) Expanded Program for Immunization describes an ideal vaccine as one that is heat-stable, requires only one shot, and is easy to administer. Although already existing technologies, such as microspheres composed of poly(lactic-co-glycolic acid) (PLGA), are able to encapsulate vaccines and release them over an extended period of time up to several weeks, they are not able to maintain antigen stability over the longer time intervals in vivo. Vaccines such as IPV, however, are known to be unstable at elevated temperature, such as the 37°C environment of the body, as well as in the acidic environment of the degrading PLGA microspheres. Please click Additional Files below to see the full abstract

    Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release

    Get PDF
    AbstractVaccines are a critical clinical tool in preventing illness and death due to infectious diseases and are regularly administered to children and adults across the globe. In order to obtain full protection from many vaccines, an individual needs to receive multiple doses over the course of months. However, vaccine administration in developing countries is limited by the difficulty in consistently delivering a second or third dose, and some vaccines, including the inactivated polio vaccine (IPV), must be injected more than once for efficacy. In addition, IPV does not remain stable over time at elevated temperatures, such as those it would encounter over time in the body if it were to be injected as a single-administration vaccine. In this manuscript, we describe microspheres composed of poly(lactic-co-glycolic acid) (PLGA) that can encapsulate IPV along with stabilizing excipients and release immunogenic IPV over the course of several weeks. Additionally, pH-sensitive, cationic dopants such as Eudragit E polymer caused clinically relevant amounts of stable IPV release upon degradation of the PLGA matrix. Specifically, IPV was released in two separate bursts, mimicking the delivery of two boluses approximately one month apart. In one of our top formulations, 1.4, 1.1, and 1.2 doses of the IPV serotype 1, 2, and 3, respectively, were released within the first few days from 50mg of particles. During the delayed, second burst, 0.5, 0.8, and 0.6 doses of each serotype, respectively, were released; thus, 50mg of these particles released approximately two clinical doses spaced a month apart. Immunization of rats with the leading microsphere formulation showed more robust and long-lasting humoral immune response compared to a single bolus injection and was statistically non-inferior from two bolus injections spaced 1 month apart. By minimizing the number of administrations of a vaccine, such as IPV, this technology can serve as a tool to aid in the eradication of polio and other infectious diseases for the improvement of global health

    Probabilistic Bisimulation: Naturally on Distributions

    Full text link
    In contrast to the usual understanding of probabilistic systems as stochastic processes, recently these systems have also been regarded as transformers of probabilities. In this paper, we give a natural definition of strong bisimulation for probabilistic systems corresponding to this view that treats probability distributions as first-class citizens. Our definition applies in the same way to discrete systems as well as to systems with uncountable state and action spaces. Several examples demonstrate that our definition refines the understanding of behavioural equivalences of probabilistic systems. In particular, it solves a long-standing open problem concerning the representation of memoryless continuous time by memory-full continuous time. Finally, we give algorithms for computing this bisimulation not only for finite but also for classes of uncountably infinite systems

    Suppression of core polarization in halo nuclei

    Get PDF
    We present a microscopic study of halo nuclei, starting from the Paris and Bonn potentials and employing a two-frequency shell model approach. It is found that the core-polarization effect is dramatically suppressed in such nuclei. Consequently the effective interaction for halo nucleons is almost entirely given by the bare G-matrix alone, which presently can be evaluated with a high degree of accuracy. The experimental pairing energies between the two halo neutrons in 6^6He and 11^{11}Li nuclei are satisfactorily reproduced by our calculation. It is suggested that the fundamental nucleon-nucleon interaction can be probed in a clearer and more direct way in halo nuclei than in ordinary nuclei.Comment: 11 pages, RevTex, 2 postscript figures; major revisions, matches version to appear in Phys. Rev. Letter

    Uniform tiling with electrical resistors

    Get PDF
    The electric resistance between two arbitrary nodes on any infinite lattice structure of resistors that is a periodic tiling of space is obtained. Our general approach is based on the lattice Green's function of the Laplacian matrix associated with the network. We present several non-trivial examples to show how efficient our method is. Deriving explicit resistance formulas it is shown that the Kagom\'e, the diced and the decorated lattice can be mapped to the triangular and square lattice of resistors. Our work can be extended to the random walk problem or to electron dynamics in condensed matter physics.Comment: 22 pages, 14 figure

    Two-frequency shell model for hypernuclei and meson-exchange hyperon-nucleon potentials

    Get PDF
    A two-frequency shell model is proposed for investigating the structure of hypernuclei starting with a hyperon-nucleon potential in free space. In a calculation using the folded-diagram method for Λ¹⁶O, the Λ single particle energy is found to have a saturation minimum at an oscillator frequency ħωΛ≈10MeV, for the Λ orbit, which is considerably smaller than ħωN=14MeV for the nucleon orbit. The spin-dependence parameters derived from the Nijmegen NSC89 and NSC97f potentials are similar, but both are rather different from those obtained with the Jülich-B potential. The ΛNN three-body interactions induced by ΛN-ΣN transitions are important for the spin parameters, but relatively unimportant for the low-lying states of Λ¹⁶O.Yiharn Tzeng, S. Y. Tsay Tzeng, T. T. S. Kuo, T.-S.H. Lee, and V. G. D. Stok

    Spanning trees on the Sierpinski gasket

    Full text link
    We obtain the numbers of spanning trees on the Sierpinski gasket SGd(n)SG_d(n) with dimension dd equal to two, three and four. The general expression for the number of spanning trees on SGd(n)SG_d(n) with arbitrary dd is conjectured. The numbers of spanning trees on the generalized Sierpinski gasket SGd,b(n)SG_{d,b}(n) with d=2d=2 and b=3,4b=3,4 are also obtained.Comment: 20 pages, 8 figures, 1 tabl
    corecore