1,392 research outputs found

    Myosin light chain kinase is not a regulator of synaptic vesicle trafficking during repetitive exocytosis in cultured hippocampal neurons

    Get PDF
    The mechanism by which synaptic vesicles (SVs) are recruited to the release site is poorly understood. One candidate mechanism for trafficking of SVs is the myosin-actin motor system. Myosin activity is modulated by myosin light chain kinase (MLCK), which in turn is activated by calmodulin. Ca2+ signaling in presynaptic terminals, therefore, may serve to regulate SV mobility along actin filaments via MLCK. Previous studies in different types of synapses have supported such a hypothesis. Here, we further investigated the role of MLCK in neurotransmitter release at glutamatergic synapses in cultured hippocampal neurons by examining the effects of two MLCK inhibitors, 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine(.)HCl (ML-7) and wortmannin. Bath application of ML-7 enhanced short-term depression of EPSCs to repetitive stimulation, whereas it reduced presynaptic release probability. However, ML-7 also inhibited action potential amplitude and voltage-gated Ca2+ channel currents. These effects were not mimicked by wortmannin, suggesting that ML-7 was not specific to MLCK in hippocampal neurons. When SV exocytosis was directly triggered by a Ca2+ ionophore, calcimycin, to bypass voltage-gated Ca2+ channels, ML-7 had no effect on neurotransmitter release. Furthermore, when SV exocytosis elicited by electrical field stimulation was monitored by styryl dye, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-( dibutylamino) styryl) pyridinium dibromide], the unloading kinetics of the dye was not altered in the presence of wortmannin. These data indicate that MLCK is not a major regulator of presynaptic SV trafficking during repetitive exocytosis at hippocampal synapses

    Utility investigation of artificial time delay in displacement-noise-free interferometers

    Get PDF
    Laser interferometer gravitational wave detectors are usually limited by displacement noise in their lower frequency band. Recently, theoretical proposals have been put forward to construct schemes of interferometry that are insusceptible to displacement noise as well as classical laser noise. These so-called displacement-noise-free interferometry (DFI) schemes take advantage of the difference between gravitational waves and displacement noise in their effects on light propagation. However, since this difference diminishes in lower frequencies (i.e., Omega>[script L]D/c) into the interferometry scheme, with the hope of improving low-frequency sensitivity. We found that sensitivity can only be improved by schemes in which fluctuations in the artificial time delays are not canceled

    Calculation Of Pressure Rise And Energy Of Hot Gases Due To High Energy Arcing Faults In The Metal-clad Switchgear

    Get PDF
    This paper presents the 3-D CFD calculation results of the pressure rise due to the High Energy Arcing Faults (HEAFs) in the metal-clad switchgears. The calculations were performed considering the came-off of the roof panel that was observed in the arc tests. The calculated pressure development approximately agreed with the measured one. Furthermore, the energy of hot gases exhausted from the broken roof panel was calculated to investigate the thermal effect of hot gases

    Failures of harbour walls at Malaga and Barcelona

    Get PDF
    The paper describes the failure of harbour walls which occurred at Malaga on 4th July 2004 and at Barcelona on 1st January 2007, associated with an inadequate consideration of the ground conditions in the light of the marine environment. At Malaga, there was an existing breakwater hence the new harbour was protected from the effect of the waves while at Barcelona, the construction of the quay wall proceeded at a faster rate than the breakwater. In both cases the wharf backfill was placed rapidly on the soft muds, progressing from the inland side. The paper discusses the importance of an overview including the ground investigation, engineering design, construction method and speed of construction

    Calculation of OPGW Strands Melting due to DC Arc Discharge Simulating High-Energy Lightning Strike

    Get PDF
    Metal strands of OPGWs (composite fiber-optic ground wires) installed in overhead power transmission lines are sometimes melted and broken when struck by high-energy lightning. This paper presents the calculation results regarding OPGW strands melting behavior when struck by DC arcs simulating high-energy lightning. The calculations revealed that the melted volume of the strand was 26% of the strand volume before the arc test, i.e. the rate of the non-melted volume of the strand was 74%. On the other hand, the residual tensile strength of the melted strand was 69% of the other non-melted strands after DC arc test. These results suggest there is a strong correlation between the calculated non-melted volume of the strand and the measured residual tensile strength of the melted strand

    Numerical Assessment of Infragravity Swash Response to Offshore Wave Frequency Spread Variability

    Get PDF
    We use a numerical model, already validated for this purpose, to simulate the effect of wave frequency spread on wave transformation and swash amplitudes. Simulations are performed for planar beach slope cases and for offshore wave spectra whose frequency spread changes over realistic values. Results indicate that frequency spread, under normally approaching waves, affects swash amplitudes. For moderately dissipative conditions, the significant infragravity swash increases for increasing values of the offshore frequency spread. The opposite occurs under extremely dissipative conditions. The numerical analysis suggests that this inverted pattern is driven by the effect that different distributions of incoming long?wave energy have on low?frequency wave propagation and dissipation. In fact, with large frequency spreads, wave groups force relatively short subharmonic waves that are strongly enhanced in the shoaling zone. This process leads to an infragravity swash increase for increasing frequency spread under moderately dissipative conditions in which low?frequency energy dissipation in shallow water is negligible or small. However, under extremely dissipative conditions, the significant low?frequency energy dissipation associated with large frequency spreads overturns the strong energy growth in the shoaling zone eventually yielding an infragravity swash decrease for increasing frequency spread.This work has been funded under (1) the RETOS INVESTIGACION 2014 (Grant BIA2014-59718-R) program of the Spanish Ministry of Economy and Competitiveness and (2) the NEPTUNE 2 project, L. R. 7/2007 by Regione Autonoma della Sardegna

    Homeostatic synaptic plasticity: from single synapses to neural circuits.

    Get PDF
    Homeostatic synaptic plasticity remains an enigmatic form of synaptic plasticity. Increasing interest on the topic has fuelled a surge of recent studies that have identified key molecular players and the signaling pathways involved. However, the new findings also highlight our lack of knowledge concerning some of the basic properties of homeostatic synaptic plasticity. In this review we address how homeostatic mechanisms balance synaptic strengths between the presynaptic and the postsynaptic terminals and across synapses that share the same postsynaptic neuron

    Knot Floer homology detects fibred knots

    Get PDF
    Ozsv\'ath and Szab\'o conjectured that knot Floer homology detects fibred knots in S3S^3. We will prove this conjecture for null-homologous knots in arbitrary closed 3--manifolds. Namely, if KK is a knot in a closed 3--manifold YY, YKY-K is irreducible, and HFK^(Y,K)\hat{HFK}(Y,K) is monic, then KK is fibred. The proof relies on previous works due to Gabai, Ozsv\'ath--Szab\'o, Ghiggini and the author. A corollary is that if a knot in S3S^3 admits a lens space surgery, then the knot is fibred.Comment: version 4: incorporates referee's suggestions, to appear in Inventiones Mathematica

    Hybrid dispersion laser scanner.

    Get PDF
    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points
    corecore