16 research outputs found

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    No full text
    none186We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL - DA2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. Appendices are available in electronic form at <A href="http://www.aanda.org">http://www.aanda.orgP. Collaboration;P. A. R.;N. Aghanim;M. Arnaud;M. Ashdown;F. Atrio-Barandela;J. Aumont;C. Baccigalupi;A. Balbi;A. J. Banday;R. B. Barreiro;J. G. Bartlett;E. Battaner;R. Battye;K. Benabed;J. Bernard;M. Bersanelli;R. Bhatia;I. Bikmaev;H. B�hringer;A. Bonaldi;J. R. Bond;S. Borgani;J. Borrill;F. R. Bouchet;H. Bourdin;M. L. Brown;M. Bucher;R. Burenin;C. Burigana;R. C. Butler;P. Cabella;J. Cardoso;P. Carvalho;A. Chamballu;L. Chiang;G. Chon;D. L. Clements;S. Colafrancesco;A. Coulais;F. Cuttaia;A. D. Silva;H. Dahle;R. J. Davis;P. d. Bernardis;G. d. Gasperis;J. Delabrouille;J. D�mocl�s;F. D�sert;J. M. Diego;K. Dolag;H. Dole;S. Donzelli;O. Dor�;M. Douspis;X. Dupac;G. Efstathiou;T. A. En�lin;H. K. Eriksen;F. Finelli;I. Flores-Cacho;O. Forni;M. Frailis;E. Franceschi;M. Frommert;S. Galeotta;K. Ganga;R. T. G�nova-Santos;M. Giard;Y. Giraud-H�raud;J. Gonz�lez-Nuevo;K. M. G�rski;A. Gregorio;A. Gruppuso;F. K. Hansen;D. Harrison;C. Hern�ndez-Monteagudo;D. Herranz;S. R. Hildebrandt;E. Hivon;M. Hobson;W. A. Holmes;K. M. Huffenberger;G. Hurier;T. Jagemann;M. Juvela;E. Keih�nen;I. Khamitov;R. Kneissl;J. Knoche;M. Kunz;H. Kurki-Suonio;G. Lagache;J. Lamarre;A. Lasenby;C. R. Lawrence;M. L. Jeune;S. Leach;R. Leonardi;A. Liddle;P. B. Lilje;M. Linden-V�rnle;M. L�pez-Caniego;G. Luzzi;J. F. Mac�as-P�rez;D. Maino;N. Mandolesi;M. Maris;F. Marleau;D. J. Marshall;E. Mart�nez-Gonz�lez;S. Masi;S. Matarrese;F. Matthai;P. Mazzotta;P. R. Meinhold;A. Melchiorri;J. Melin;L. Mendes;S. Mitra;M. Miville-Desch�nes;L. Montier;G. Morgante;D. Munshi;P. Natoli;H. U. N�rgaard-Nielsen;F. Noviello;S. Osborne;F. Pajot;D. Paoletti;B. Partridge;T. J. Pearson;O. Perdereau;F. Perrotta;F. Piacentini;M. Piat;E. Pierpaoli;R. Piffaretti;P. Platania;E. Pointecouteau;G. Polenta;N. Ponthieu;L. Popa;T. Poutanen;G. W. Pratt;S. Prunet;J. Puget;J. P. Rachen;R. Rebolo;M. Reinecke;M. Remazeilles;C. Renault;S. Ricciardi;I. Ristorcelli;G. Rocha;C. Rosset;M. Rossetti;J. A. Rubi�o-Mart�n;B. Rusholme;M. Sandri;G. Savini;D. Scott;J. Starck;F. Stivoli;V. Stolyarov;R. Sudiwala;R. Sunyaev;D. Sutton;A. Suur-Uski;J. Sygnet;J. A. Tauber;L. Terenzi;L. Toffolatti;M. Tomasi;M. Tristram;L. Valenziano;B. V. Tent;P. Vielva;F. Villa;N. Vittorio;B. D. Wandelt;J. Weller;S. D. M.;D. Yvon;A. Zacchei;A. ZoncaP., Collaboration; P. A., R.; N., Aghanim; M., Arnaud; M., Ashdown; F., Atrio Barandela; J., Aumont; C., Baccigalupi; A., Balbi; A. J., Banday; R. B., Barreiro; J. G., Bartlett; E., Battaner; R., Battye; K., Benabed; J., Bernard; M., Bersanelli; R., Bhatia; I., Bikmaev; H., B�hringer; A., Bonaldi; J. R., Bond; S., Borgani; J., Borrill; F. R., Bouchet; H., Bourdin; M. L., Brown; M., Bucher; R., Burenin; C., Burigana; R. C., Butler; P., Cabella; J., Cardoso; P., Carvalho; A., Chamballu; L., Chiang; G., Chon; D. L., Clements; S., Colafrancesco; A., Coulais; F., Cuttaia; A. D., Silva; H., Dahle; R. J., Davis; P. d., Bernardis; G. d., Gasperis; J., Delabrouille; J., D�mocl�s; F., D�sert; J. M., Diego; K., Dolag; H., Dole; S., Donzelli; O., Dor�; M., Douspis; X., Dupac; G., Efstathiou; T. A., En�lin; H. K., Eriksen; F., Finelli; I., Flores Cacho; O., Forni; M., Frailis; E., Franceschi; M., Frommert; S., Galeotta; K., Ganga; R. T., G�nova Santos; M., Giard; Y., Giraud H�raud; J., Gonz�lez Nuevo; K. M., G�rski; A., Gregorio; A., Gruppuso; F. K., Hansen; D., Harrison; C., Hern�ndez Monteagudo; D., Herranz; S. R., Hildebrandt; E., Hivon; M., Hobson; W. A., Holmes; K. M., Huffenberger; G., Hurier; T., Jagemann; M., Juvela; E., Keih�nen; I., Khamitov; R., Kneissl; J., Knoche; M., Kunz; H., Kurki Suonio; G., Lagache; J., Lamarre; A., Lasenby; C. R., Lawrence; M. L., Jeune; S., Leach; R., Leonardi; A., Liddle; P. B., Lilje; M., Linden V�rnle; M., L�pez Caniego; G., Luzzi; J. F., Mac�as P�rez; D., Maino; N., Mandolesi; M., Maris; F., Marleau; D. J., Marshall; E., Mart�nez Gonz�lez; S., Masi; S., Matarrese; F., Matthai; P., Mazzotta; P. R., Meinhold; A., Melchiorri; J., Melin; L., Mendes; S., Mitra; M., Miville Desch�nes; L., Montier; G., Morgante; D., Munshi; P., Natoli; H. U., N�rgaard Nielsen; F., Noviello; S., Osborne; F., Pajot; D., Paoletti; B., Partridge; T. J., Pearson; O., Perdereau; F., Perrotta; F., Piacentini; M., Piat; E., Pierpaoli; R., Piffaretti; P., Platania; E., Pointecouteau; G., Polenta; N., Ponthieu; L., Popa; T., Poutanen; G. W., Pratt; S., Prunet; J., Puget; J. P., Rachen; R., Rebolo; M., Reinecke; M., Remazeilles; C., Renault; S., Ricciardi; I., Ristorcelli; G., Rocha; C., Rosset; M., Rossetti; J. A., Rubi�o Mart�n; B., Rusholme; M., Sandri; G., Savini; D., Scott; J., Starck; F., Stivoli; V., Stolyarov; R., Sudiwala; R., Sunyaev; D., Sutton; A., Suur Uski; J., Sygnet; J. A., Tauber; Terenzi, Luca; L., Toffolatti; M., Tomasi; M., Tristram; L., Valenziano; B. V., Tent; P., Vielva; F., Villa; N., Vittorio; B. D., Wandelt; J., Weller; S. D., M.; D., Yvon; A., Zacchei; A., Zonc

    Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts

    No full text
    none255We present constraints on cosmological parameters using number counts as a function of redshift for a sub-sample of 189 galaxy clusters from the Planck SZ (PSZ) catalogue. The PSZ is selected through the signature of the Sunyaev-Zeldovich (SZ) effect, and the sub-sample used here has a signal-to-noise threshold of seven, with each object confirmed as a cluster and all but one with a redshift estimate. We discuss the completeness of the sample and our construction of a likelihood analysis. Using a relation between mass M and SZ signal Y calibrated to X-ray measurements, we derive constraints on the power spectrum amplitude sigma8 and matter density parameter Omegam in a flat LambdaCDM model. We test the robustness of our estimates and find that possible biases in the Y-M relation and the halo mass function are larger than the statistical uncertainties from the cluster sample. Assuming the X-ray determined mass to be biased low relative to the true mass by between zero and 30%, motivated by comparison of the observed mass scaling relations to those from a set of numerical simulations, we find that sigma8 = 0.75 ??? 0.03, Omegam = 0.29 ??? 0.02, and sigma8(Omegam/ 0.27)0.3 = 0.764 ??? 0.025. The value of sigma8 is degenerate with the mass bias; if the latter is fixed to a value of 20% (the central value from numerical simulations) we find sigma8(Omegam/0.27)0.3 = 0.78 ??? 0.01 and a tighter one-dimensional range sigma8 = 0.77 ??? 0.02. We find that the larger values of sigma8 and Omegam preferred by Planck's measurements of the primary CMB anisotropies can be accommodated by a mass bias of about 40%. Alternatively, consistency with the primary CMB constraints can be achieved by inclusion of processes that suppress power on small scales relative to the LambdaCDM model, such as a component of massive neutrinos. We place our results in the context of other determinations of cosmologicalparameters, and discuss issues that need to be resolved in order to make further progress in this field.P. Collaboration;P. A. R.;N. Aghanim;C. Armitage-Caplan;M. Arnaud;M. Ashdown;F. Atrio-Barandela;J. Aumont;C. Baccigalupi;A. J. Banday;R. B. Barreiro;R. Barrena;J. G. Bartlett;E. Battaner;R. Battye;K. Benabed;A. Beno�t;A. Benoit-L�vy;J. Bernard;M. Bersanelli;P. Bielewicz;I. Bikmaev;A. Blanchard;J. Bobin;J. J. Bock;H. B�hringer;A. Bonaldi;J. R. Bond;J. Borrill;F. R. Bouchet;H. Bourdin;M. Bridges;M. L. Brown;M. Bucher;R. Burenin;C. Burigana;R. C. Butler;J. Cardoso;P. Carvalho;A. Catalano;A. Challinor;A. Chamballu;R. Chary;L. Chiang;H. C. Chiang;G. Chon;P. R. Christensen;S. Church;D. L. Clements;S. Colombi;L. P. L.;F. Couchot;A. Coulais;B. P. Crill;A. Curto;F. Cuttaia;A. D. Silva;H. Dahle;L. Danese;R. D. Davies;R. J. Davis;P. d. Bernardis;A. d. Rosa;G. d. Zotti;J. Delabrouille;J. Delouis;J. D�mocl�s;F. D�sert;C. Dickinson;J. M. Diego;K. Dolag;H. Dole;S. Donzelli;O. Dor�;M. Douspis;X. Dupac;G. Efstathiou;T. A. En�lin;H. K. Eriksen;F. Finelli;I. Flores-Cacho;O. Forni;M. Frailis;E. Franceschi;S. Fromenteau;S. Galeotta;K. Ganga;R. T. G�nova-Santos;M. Giard;G. Giardino;Y. Giraud-H�raud;J. Gonz�lez-Nuevo;K. M. G�rski;S. Gratton;A. Gregorio;A. Gruppuso;F. K. Hansen;D. Hanson;D. Harrison;S. Henrot-Versill�;C. Hern�ndez-Monteagudo;D. Herranz;S. R. Hildebrandt;E. Hivon;M. Hobson;W. A. Holmes;A. Hornstrup;W. Hovest;K. M. Huffenberger;G. Hurier;T. R. Jaffe;A. H. Jaffe;W. C. Jones;M. Juvela;E. Keih�nen;R. Keskitalo;I. Khamitov;T. S. Kisner;R. Kneissl;J. Knoche;L. Knox;M. Kunz;H. Kurki-Suonio;G. Lagache;A. L�hteenm�ki;J. Lamarre;A. Lasenby;R. J. Laureijs;C. R. Lawrence;J. P. Leahy;R. Leonardi;J. Le�n-Tavares;J. Lesgourgues;A. Liddle;M. Liguori;P. B. Lilje;M. Linden-V�rnle;M. L�pez-Caniego;P. M. Lubin;J. F. Mac�as-P�rez;B. Maffei;D. Maino;N. Mandolesi;A. Marcos-Caballero;M. Maris;D. J. Marshall;P. G. Martin;E. Mart�nez-Gonz�lez;S. Masi;S. Matarrese;F. Matthai;P. Mazzotta;P. R. Meinhold;A. Melchiorri;J. Melin;L. Mendes;A. Mennella;M. Migliaccio;S. Mitra;M. Miville-Desch�nes;A. Moneti;L. Montier;G. Morgante;D. Mortlock;A. Moss;D. Munshi;P. Naselsky;F. Nati;P. Natoli;C. B. Netterfield;H. U. N�rgaard-Nielsen;F. Noviello;D. Novikov;I. Novikov;S. Osborne;C. A. Oxborrow;F. Paci;L. Pagano;F. Pajot;D. Paoletti;B. Partridge;F. Pasian;G. Patanchon;O. Perdereau;L. Perotto;F. Perrotta;F. Piacentini;M. Piat;E. Pierpaoli;D. Pietrobon;S. Plaszczynski;E. Pointecouteau;G. Polenta;N. Ponthieu;L. Popa;T. Poutanen;G. W. Pratt;G. Pr�zeau;S. Prunet;J. Puget;J. P. Rachen;R. Rebolo;M. Reinecke;M. Remazeilles;C. Renault;S. Ricciardi;T. Riller;I. Ristorcelli;G. Rocha;M. Roman;C. Rosset;G. Roudier;M. Rowan-Robinson;J. A. Rubi�o-Mart�n;B. Rusholme;M. Sandri;D. Santos;G. Savini;D. Scott;M. D. Seiffert;E. P. S.;L. D. Spencer;J. Starck;V. Stolyarov;R. Stompor;R. Sudiwala;R. Sunyaev;F. Sureau;D. Sutton;A. Suur-Uski;J. Sygnet;J. A. Tauber;D. Tavagnacco;L. Terenzi;L. Toffolatti;M. Tomasi;M. Tristram;M. Tucci;J. Tuovinen;M. T�rler;G. Umana;L. Valenziano;J. Valiviita;B. V. Tent;P. Vielva;F. Villa;N. Vittorio;L. A. Wade;B. D. Wandelt;J. Weller;M. White;S. D. M.;D. Yvon;A. Zacchei;A. ZoncaP., Collaboration; P. A., R.; N., Aghanim; C., Armitage Caplan; M., Arnaud; M., Ashdown; F., Atrio Barandela; J., Aumont; C., Baccigalupi; A. J., Banday; R. B., Barreiro; R., Barrena; J. G., Bartlett; E., Battaner; R., Battye; K., Benabed; A., Beno�t; A., Benoit L�vy; J., Bernard; M., Bersanelli; P., Bielewicz; I., Bikmaev; A., Blanchard; J., Bobin; J. J., Bock; H., B�hringer; A., Bonaldi; J. R., Bond; J., Borrill; F. R., Bouchet; H., Bourdin; M., Bridges; M. L., Brown; M., Bucher; R., Burenin; C., Burigana; R. C., Butler; J., Cardoso; P., Carvalho; A., Catalano; A., Challinor; A., Chamballu; R., Chary; L., Chiang; H. C., Chiang; G., Chon; P. R., Christensen; S., Church; D. L., Clements; S., Colombi; L. P., L.; F., Couchot; A., Coulais; B. P., Crill; A., Curto; F., Cuttaia; A. D., Silva; H., Dahle; L., Danese; R. D., Davies; R. J., Davis; P. d., Bernardis; A. d., Rosa; G. d., Zotti; J., Delabrouille; J., Delouis; J., D�mocl�s; F., D�sert; C., Dickinson; J. M., Diego; K., Dolag; H., Dole; S., Donzelli; O., Dor�; M., Douspis; X., Dupac; G., Efstathiou; T. A., En�lin; H. K., Eriksen; F., Finelli; I., Flores Cacho; O., Forni; M., Frailis; E., Franceschi; S., Fromenteau; S., Galeotta; K., Ganga; R. T., G�nova Santos; M., Giard; G., Giardino; Y., Giraud H�raud; J., Gonz�lez Nuevo; K. M., G�rski; S., Gratton; A., Gregorio; A., Gruppuso; F. K., Hansen; D., Hanson; D., Harrison; S., Henrot Versill�; C., Hern�ndez Monteagudo; D., Herranz; S. R., Hildebrandt; E., Hivon; M., Hobson; W. A., Holmes; A., Hornstrup; W., Hovest; K. M., Huffenberger; G., Hurier; T. R., Jaffe; A. H., Jaffe; W. C., Jones; M., Juvela; E., Keih�nen; R., Keskitalo; I., Khamitov; T. S., Kisner; R., Kneissl; J., Knoche; L., Knox; M., Kunz; H., Kurki Suonio; G., Lagache; A., L�hteenm�ki; J., Lamarre; A., Lasenby; R. J., Laureijs; C. R., Lawrence; J. P., Leahy; R., Leonardi; J., Le�n Tavares; J., Lesgourgues; A., Liddle; M., Liguori; P. B., Lilje; M., Linden V�rnle; M., L�pez Caniego; P. M., Lubin; J. F., Mac�as P�rez; B., Maffei; D., Maino; N., Mandolesi; A., Marcos Caballero; M., Maris; D. J., Marshall; P. G., Martin; E., Mart�nez Gonz�lez; S., Masi; S., Matarrese; F., Matthai; P., Mazzotta; P. R., Meinhold; A., Melchiorri; J., Melin; L., Mendes; A., Mennella; M., Migliaccio; S., Mitra; M., Miville Desch�nes; A., Moneti; L., Montier; G., Morgante; D., Mortlock; A., Moss; D., Munshi; P., Naselsky; F., Nati; P., Natoli; C. B., Netterfield; H. U., N�rgaard Nielsen; F., Noviello; D., Novikov; I., Novikov; S., Osborne; C. A., Oxborrow; F., Paci; L., Pagano; F., Pajot; D., Paoletti; B., Partridge; F., Pasian; G., Patanchon; O., Perdereau; L., Perotto; F., Perrotta; F., Piacentini; M., Piat; E., Pierpaoli; D., Pietrobon; S., Plaszczynski; E., Pointecouteau; G., Polenta; N., Ponthieu; L., Popa; T., Poutanen; G. W., Pratt; G., Pr�zeau; S., Prunet; J., Puget; J. P., Rachen; R., Rebolo; M., Reinecke; M., Remazeilles; C., Renault; S., Ricciardi; T., Riller; I., Ristorcelli; G., Rocha; M., Roman; C., Rosset; G., Roudier; M., Rowan Robinson; J. A., Rubi�o Mart�n; B., Rusholme; M., Sandri; D., Santos; G., Savini; D., Scott; M. D., Seiffert; E. P., S.; L. D., Spencer; J., Starck; V., Stolyarov; R., Stompor; R., Sudiwala; R., Sunyaev; F., Sureau; D., Sutton; A., Suur Uski; J., Sygnet; J. A., Tauber; D., Tavagnacco; Terenzi, Luca; L., Toffolatti; M., Tomasi; M., Tristram; M., Tucci; J., Tuovinen; M., T�rler; G., Umana; L., Valenziano; J., Valiviita; B. V., Tent; P., Vielva; F., Villa; N., Vittorio; L. A., Wade; B. D., Wandelt; J., Weller; M., White; S. D., M.; D., Yvon; A., Zacchei; A., Zonc

    Planck 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation

    Get PDF
    We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The transientresponses to detector glitch shapes are not simple single-pole exponential decays and fall into three families. The glitch shape for each family has been characterized empirically in flight data and these shapes have been used to remove glitches from the detector time streams. The spectrum of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro-machined bolometric detectors. In the Planck orbit at L2, the particle flux is around 5 cm-2 s-1 and is dominated by protons incident on the spacecraft with energy >39 MeV, at a rate of typically one event per second per detector. Different categories of glitches have different signatures in the time stream. Two of the glitch types have a low amplitude component that decays over nearly 1 s. This component produces excess noise if not properly removed from the time-ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from the time streams. Using realistic simulations, we find that this method does not introduce signal bias into the Planck data. Reproduced with permission from Astronomy & Astrophysics, © ESO 201

    Latest Progress on the QUBIC Instrument

    Get PDF
    International audienceQUBIC is a unique instrument that crosses the barriers between classical imaging architectures and interferometry taking advantage from both for high sensitivity and systematics mitigation. The scientific target is the detection of the primordial gravitational waves imprint on the Cosmic Microwave Background which are the proof of inflation, holy grail of modern cosmology. In this paper, we show the latest advances in the development of the architecture and the sub-systems of the first module of this instrument to be deployed in Dome Charlie Concordia base - Antarctica in 2015

    Planck intermediate results. III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal

    No full text
    We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal DA2 Y500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an MWL - DA2 Y500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R500 are on average ~ 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations

    Planck intermediate results. XVI. Profile likelihoods for cosmological parameters

    No full text
    We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the LambdaCDM best-fit solution with respect to previously-released results, and the construction of frequentist confidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman-Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the cosmic microwave background (CMB) combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit 11 mnu <= 0.26 eV (95% confidence) from the CMB+lensing+BAO data combination
    corecore