3,192 research outputs found

    A typology: participatory research and gender analysis in natural resource management research

    Get PDF

    Amine-terminated nanoparticle films: pattern deposition by a simple nanostencilling technique and stability studies under X-ray irradiation

    Get PDF
    Exploring the surface chemistry of nanopatterned amine-terminated nanoparticle films.</p

    Genetic organization of pha gene locus affects phaC expression, poly(hydroxyalkanoate) composition and granule morphology in Pseudomonas corrugata

    Get PDF
    The complete sequence of the pha locus responsible for the biosynthesis of poly(hydroxyalkanoates) (PHAs) in Pseudomonas corrugata 388 was determined. As with the other known pseudomonad pha gene loci, the one in P. corrugata 388 also consists of phaC1 (1,680 bps; PHA synthase 1), phaZ (858 bp; PHA depolymerase) and phaC2 (1,683 bp; PHA synthase 2) genes. A BLAST search showed that the nucleotide sequences of these genes and the amino-acid sequences of their respective gene products are homologous to those of P. corrugata CFBP5454 and P. mediterranea CFBP5447. A putative intrinsic transcription terminator consisting of a dyad symmetry (24 bp; Delta G = -41.8 kcals) that precedes a stretch of dA residues was located in the phaC1-phaZ intergenic region. P. corrugata mutant-clones XI 32-1 and XI 32-4 were constructed in which this intergenic region was replaced with a selectable kanamycin-resistance gene. These mutant clones when grown on oleic acid for 48 h showed 4.7-to 7.0-fold increases of phaC1 and phaC2 relative expression in comparison to the initial inoculants, whereas the parental strain showed only 1.2- to 1.4-fold increases. Furthermore, in comparison to parental P. corrugata with only a few large PHA inclusion bodies, the mutants grown on oleic acid produce numerous smaller PHA granules that line the periphery of the cells. With glucose as a substrate, XI 32-1 and XI 32-4 clones produce mcl-PHA with a high content (26-31 mol%) of the mono-unsaturated 3-hydroxydodecenoate as a repeat-unit monomer. Our results show for the first time the effects of the phaC1-phaZ intergenic region on the substrate-dependent temporal expression of phaC1 and phaC2 genes, the repeat-unit composition of mcl-PHA, and the morphology of the PHA granules

    Hydrogen patterning of Ga1-xMnxAs for planar spintronics

    Full text link
    We demonstrate two patterning techniques based on hydrogen passivation of Ga1-xMnxAs to produce isolated ferromagnetically active regions embedded uniformly in a paramagnetic, insulating host. The first method consists of selective hydrogenation of Ga1-xMnxAs by lithographic masking. Magnetotransport measurements of Hall-bars made in this manner display the characteristic properties of the hole-mediated ferromagnetic phase, which result from good pattern isolation. Arrays of Ga1-xMnxAs dots as small as 250 nm across have been realized by this process. The second process consists of blanket hydrogenation of Ga1-xMnxAs followed by local reactivation using confined low-power pulsed-laser annealing. Conductance imaging reveals local electrical reactivation of micrometer-sized regions that accompanies the restoration of ferromagnetism. The spatial resolution achievable with this method can potentially reach <100 nm by employing near-field laser processing. The high spatial resolution attainable by hydrogenation patterning enables the development of systems with novel functionalities such as lateral spin-injection as well as the exploration of magnetization dynamics in individual and coupled structures made from this novel class of semiconductors.Comment: ICDS-24, July 2007. 8 pages with 4 figure

    Extended Fermi coordinates

    Full text link
    We extend the notion of Fermi coordinates to a generalized definition in which the highest orders are described by arbitrary functions. From this definition rises a formalism that naturally gives coordinate transformation formulae. Some examples are developped in which the extended Fermi coordinates simplify the metric components.Comment: 16 pages, 1 figur

    Reconfigurable ferromagnetic liquid droplets.

    Get PDF
    Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving the magnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic field, inspiring studies on active matter, energy-dissipative assemblies, and programmable liquid constructs

    Formal analogies between gravitation and electrodynamics

    Full text link
    We develop a theoretical framework that allows us to compare electromagnetism and gravitation in a fully covariant way. This new scenario does not rely on any kind of approximation nor associate objects with different operational meaning as it's sometime done in the literature. We construct the electromagnetic analogue to the Riemann and Weyl tensors and develop the equations of motion for these objects. In particular, we are able to identify precisely how and in what conditions gravity can be mapped to electrodynamics. As a consequence, many of the gemometrical tools of General Relativity can be applied to Electromagnetism and vice-versa. We hope our results would shed new light in the nature of electromagnetic and gravitational theories.Comment: 9pages, submitted to General Relativity and Gravitatio

    Quantifying Self-Organization with Optimal Predictors

    Full text link
    Despite broad interest in self-organizing systems, there are few quantitative, experimentally-applicable criteria for self-organization. The existing criteria all give counter-intuitive results for important cases. In this Letter, we propose a new criterion, namely an internally-generated increase in the statistical complexity, the amount of information required for optimal prediction of the system's dynamics. We precisely define this complexity for spatially-extended dynamical systems, using the probabilistic ideas of mutual information and minimal sufficient statistics. This leads to a general method for predicting such systems, and a simple algorithm for estimating statistical complexity. The results of applying this algorithm to a class of models of excitable media (cyclic cellular automata) strongly support our proposal.Comment: Four pages, two color figure

    Spontaneous emulsification induced by nanoparticle surfactants

    Get PDF
    Microemulsions, mixtures of oil, water, and surfactant, are thermodynamically stable. Unlike conventional emulsions, microemulsions form spontaneously, have a monodisperse droplet size that can be controlled by adjusting the surfactant concentration, and do not degrade with time. To make microemulsions, a judicious choice of surfactant molecules must be made, which significantly limits their potential use. Nanoparticle surfactants, on the other hand, are a promising alternative because the surface chemistry needed to make them bind to a liquid-liquid interface is both well flexible and understood. Here, we derive a thermodynamic model predicting the conditions in which nanoparticle surfactants drive spontaneous emulsification that agrees quantitatively with experiments using Noria nanoparticles. This new class of microemulsions inherits the mechanical, chemical, and optical properties of the nanoparticles used to form them, leading to novel applications
    • …
    corecore