44 research outputs found

    Fisher Formalism For Anisotropic Gravitational-Wave Background Searches With Pulsar Timing Arrays

    Get PDF
    Pulsar timing arrays (PTAs) are currently the only experiments directly sensitive to gravitational waves with decade-long periods. Within the next five to ten years, PTAs are expected to detect the stochastic gravitational-wave background (SGWB) collectively sourced by inspiraling supermassive black hole binaries. It is expected that this background is mostly isotropic, and current searches focus on the monopole part of the SGWB. Looking ahead, anisotropies in the SGWB may provide a trove of additional information on both known and unknown astrophysical and cosmological sources. In this paper, we build a simple yet realistic Fisher formalism for anisotropic SGWB searches with PTAs. Our formalism is able to accommodate realistic properties of PTAs and allows simple and accurate forecasts. We illustrate our approach with an idealized PTA consisting of identical, isotropically distributed pulsars. In a companion paper, we apply our formalism to current PTAs and show that it can be a powerful tool to guide and optimize real data analysis

    Insights Into Searches For Anisotropies In The Nanohertz Gravitational-Wave Background

    Get PDF
    Within the next several years pulsar timing arrays (PTAs) are positioned to detect the stochastic gravitational-wave background (GWB) likely produced by the collection of inspiralling supermassive black holes binaries, and potentially constrain some exotic physics. So far most of the pulsar timing data analysis has focused on the monopole of the GWB, assuming it is perfectly isotropic. The natural next step is to search for anisotropies in the GWB. In this paper, we use the recently developed PTA Fisher matrix to gain insights into optimal search strategies for GWB anisotropies. For concreteness, we apply our results to the European Pulsar Timing Array (EPTA) data, using realistic noise characteristics of its pulsars. We project the detectability of a GWB whose angular dependence is assumed to be a linear combination of predetermined maps, such as spherical harmonics or coarse pixels. We find that the GWB monopole is always statistically correlated with these maps, implying a loss of sensitivity to the monopole when searching simultaneously for anisotropies. We then derive the angular distributions of the GWB intensity to which a PTA is most sensitive, and illustrate how one may use these “principal maps” to approximately reconstruct the angular dependence of the GWB. Since the principal maps are neither perfectly anisotropic nor uncorrelated with the monopole, we also develop a frequentist criterion to specifically search for anisotropies in the GWB without any prior knowledge about their angular distribution. Lastly, we show how to recover existing EPTA results with our Fisher formalism, and clarify their meaning. The tools presented here will be valuable in guiding and optimizing the computationally demanding analyses of pulsar timing data

    HyRec: A fast and highly accurate primordial hydrogen and helium recombination code

    Get PDF
    We present a state-of-the-art primordial recombination code, HyRec, including all the physical effects that have been shown to significantly affect recombination. The computation of helium recombination includes simple analytic treatments of hydrogen continuum opacity in the He I 2 1P - 1 1S line, the He I] 2 3P - 1 1S line, and treats feedback between these lines within the on-the-spot approximation. Hydrogen recombination is computed using the effective multilevel atom method, virtually accounting for an infinite number of excited states. We account for two-photon transitions from 2s and higher levels as well as frequency diffusion in Lyman-alpha with a full radiative transfer calculation. We present a new method to evolve the radiation field simultaneously with the level populations and the free electron fraction. These computations are sped up by taking advantage of the particular sparseness pattern of the equations describing the radiative transfer. The computation time for a full recombination history is ~2 seconds. This makes our code well suited for inclusion in Monte Carlo Markov chains for cosmological parameter estimation from upcoming high-precision cosmic microwave background anisotropy measurements.Comment: Version accepted by PRD. Numerical integration switches adapted to be well behaved for a wide range of cosmologies (Sec. V E). HyRec is available at http://www.tapir.caltech.edu/~yacine/hyrec/hyrec.htm

    Ultrafast effective multi-level atom method for primordial hydrogen recombination

    Get PDF
    Cosmological hydrogen recombination has recently been the subject of renewed attention because of its importance for predicting the power spectrum of cosmic microwave background anisotropies. It has become clear that it is necessary to account for a large number n >~ 100 of energy shells of the hydrogen atom, separately following the angular momentum substates in order to obtain sufficiently accurate recombination histories. However, the multi-level atom codes that follow the populations of all these levels are computationally expensive, limiting recent analyses to only a few points in parameter space. In this paper, we present a new method for solving the multi-level atom recombination problem, which splits the problem into a computationally expensive atomic physics component that is independent of the cosmology, and an ultrafast cosmological evolution component. The atomic physics component follows the network of bound-bound and bound-free transitions among excited states and computes the resulting effective transition rates for the small set of "interface" states radiatively connected to the ground state. The cosmological evolution component only follows the populations of the interface states. By pre-tabulating the effective rates, we can reduce the recurring cost of multi-level atom calculations by more than 5 orders of magnitude. The resulting code is fast enough for inclusion in Markov Chain Monte Carlo parameter estimation algorithms. It does not yet include the radiative transfer or high-n two-photon processes considered in some recent papers. Further work on analytic treatments for these effects will be required in order to produce a recombination code usable for Planck data analysis.Comment: Version accepted by Phys. Rev. D. Proof of equivalence of effective and standard MLA methods moved to the main text. Some rewording

    Radiative transfer effects in primordial hydrogen recombination

    Get PDF
    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of Cosmic Microwave Background anisotropies. Lyman transitions, in particular the Lyman-alpha line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, the impact of some previously ignored radiative transfer effects is calculated. First, the effect of Thomson scattering in the vicinity of the Lyman-alpha line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-alpha line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Secondly, the importance of high-lying, non overlapping Lyman transitions is assessed. It is shown that escape from lines above Ly-gamma and frequency diffusion in Ly-beta and higher lines can be neglected without loss of accuracy. Thirdly, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.Comment: 23 pages, 4 figures, to be submitted to PR

    Spitzer characterisation of dust in an anomalous emission region: the Perseus cloud

    Get PDF
    Anomalous microwave emission is known to exist in the Perseus cloud. One of the most promising candidates to explain this excess of emission is electric dipole radiation from rapidly rotating very small dust grains, commonly referred to as spinning dust. Photometric data obtained with the Spitzer Space Telescope have been reprocessed and used in conjunction with the dust emission model DUSTEM to characterise the properties of the dust within the cloud. This analysis has allowed us to constrain spatial variations in the strength of the interstellar radiation field (χISRF\chi_\mathrm{ISRF}), the mass abundances of the PAHs and VSGs relative to the BGs (YPAH_\mathrm{PAH} and YVSG_\mathrm{VSG}), the column density of hydrogen (NH_\mathrm{H}) and the equilibrium dust temperature (Tdust_\mathrm{dust}). The parameter maps of YPAH_\mathrm{PAH}, YVSG_\mathrm{VSG} and χISRF\chi_\mathrm{ISRF} are the first of their kind to be produced for the Perseus cloud, and we used these maps to investigate the physical conditions in which anomalous emission is observed. We find that in regions of anomalous emission the strength of the ISRF, and consequently the equilibrium temperature of the dust, is enhanced while there is no significant variation in the abundances of the PAHs and the VSGs or the column density of hydrogen. We interpret these results as an indication that the enhancement in χISRF\chi_\mathrm{ISRF} might be affecting the properties of the small stochastically heated dust grains resulting in an increase in the spinning dust emission observed at 33 GHz. This is the first time that such an investigation has been performed, and we believe that this type of analysis creates a new perspective in the field of anomalous emission studies, and represents a powerful new tool for constraining spinning dust models.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    A New Era in the Quest for Dark Matter

    Full text link
    There is a growing sense of `crisis' in the dark matter community, due to the absence of evidence for the most popular candidates such as weakly interacting massive particles, axions, and sterile neutrinos, despite the enormous effort that has gone into searching for these particles. Here, we discuss what we have learned about the nature of dark matter from past experiments, and the implications for planned dark matter searches in the next decade. We argue that diversifying the experimental effort, incorporating astronomical surveys and gravitational wave observations, is our best hope to make progress on the dark matter problem.Comment: Published in Nature, online on 04 Oct 2018. 13 pages, 1 figur

    Snowmass2021 theory frontier white paper: Astrophysical and cosmological probes of dark matter

    Get PDF
    While astrophysical and cosmological probes provide a remarkably precise and consistent picture of the quantity and general properties of dark matter, its fundamental nature remains one of the most significant open questions in physics. Obtaining a more comprehensive understanding of dark matter within the next decade will require overcoming a number of theoretical challenges: the groundwork for these strides is being laid now, yet much remains to be done. Chief among the upcoming challenges is establishing the theoretical foundation needed to harness the full potential of new observables in the astrophysical and cosmological domains, spanning the early Universe to the inner portions of galaxies and the stars therein. Identifying the nature of dark matter will also entail repurposing and implementing a wide range of theoretical techniques from outside the typical toolkit of astrophysics, ranging from effective field theory to the dramatically evolving world of machine learning and artificial-intelligence-based statistical inference. Through this work, the theory frontier will be at the heart of dark matter discoveries in the upcoming decade

    The State-of-Play of Anomalous Microwave Emission (AME) Research

    Full text link
    Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range 10\approx 10-60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free-free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized (1\lesssim 1%). The most natural explanation for AME is rotational emission from ultra-small dust grains ("spinning dust"), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies (50\gtrsim 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.Comment: Accepted for publication in New Astronomy Reviews. Summary of AME workshop held at ESTEC, The Netherlands, June 2016, 40 pages, 18 figures. Updated to approximately match published versio
    corecore