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We study the degree to which the cosmic microwave background (CMB) can be used to constrain
primordial non-Gaussianity involving one tensor and two scalar fluctuations, focusing on the corre-
lation of one polarization B mode with two temperature modes. In the simplest models of inflation,
the tensor-scalar-scalar primordial bispectrum is non-vanishing and is of the same order in slow-roll
parameters as the scalar-scalar-scalar bispectrum. We calculate the 〈BTT 〉 correlation arising from
a primordial tensor-scalar-scalar bispectrum, and show that constraints from an experiment like
CMB-Stage IV using this observable are more than an order of magnitude better than those on the
same primordial coupling obtained from temperature measurements alone. We argue that B-mode
non-Gaussianity opens up an as-yet-unexplored window into the early Universe, demonstrating that
significant information on primordial physics remains to be harvested from CMB anisotropies.

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) and large-scale structure have in recent years
greatly advanced our understanding of the contents and
history of the Universe. Current observational data fit
well with the concordance six-parameter ΛCDM model
[1]. While the excellent agreement between the model
and the data is undoubtedly a triumph of modern cos-
mology, our understanding of the Universe’s initial con-
ditions remains limited, and it is crucial to explore new
observational probes that can deepen our understanding
of the underlying physics.

Within the concordance model, the initial fluctuations
are fully accounted for by primordial density fluctuations,
which are purely Gaussian, adiabatic, and nearly scale
invariant, and can be described by just two parameters,
the amplitude As and the scalar spectral index ns. A
very wide class of early-universe models are capable of
accounting for such primordial fluctuations, and there-
fore these two parameters alone are not greatly informa-
tive. A great deal of effort has therefore been devoted
to searching for signatures of deviations from this simple
picture. Even in the absence of a detected deviation from
the concordance model, upper limits on various observ-
ables greatly help to discriminate among early-universe
models. Particularly interesting observables in this re-
gard include non-adiabaticity [2], running of the scalar
spectral index [3–6], primordial tensor fluctuations [7–
10], and non-Gaussianity [11–13].

The CMB contains cosmological information both in
its temperature and linear polarization. The polariza-
tion field can be separated into E-modes and B-modes
which have opposite intrinsic parity. Primordial scalar
fluctuations source temperature fluctuations and E-mode
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polarization, while primordial tensors source T , E, and
B fluctuations [7–10].

The CMB temperature power spectrum has recently
been measured to cosmic variance limits up to multi-
pole ` ≈ 2000 using data from the Planck satellite [2].
Due to the diffusion damping of fluctuations on smaller
scales, we do not expect that lower-noise observations
of the CMB will provide significantly more cosmologi-
cal information from temperature fluctuations. There is
some additional information which can be gained from
lower-noise measurements of E-mode polarization of the
CMB, though temperature and E-mode fluctuations are
sourced by nearly the same cosmological modes, and
therefore constraints on observables like non-Gaussianity
and the running of the spectral index will not signifi-
cantly improve on the current status with CMB mea-
surements alone [16]. Alternatively, large-scale-structure
observations can provide additional cosmological infor-
mation which could eventually lead to a detection of non-
Gaussianity or running [13]. This will require, however,
overcoming significant challenges in the modeling of non-
linearities [13, 17, 18], biasing [19, 20], and complex astro-
physical processes [21–25]. Another potential avenue for
measurements of primordial non-Gaussianities is the to-
mographic mapping of neutral hydrogen at high redshift
with the 21-cm line [26–28]. This will require overcom-
ing daunting observational challenges [29–31], as well as
a detailed modeling of the intrinsic non-linearities of 21-
cm fluctuations [28]. Finally, spatial fluctuations of CMB
spectral distortions can also be used to probe primordial
non-Gaussianities [32–34].

Until recently, the best constraint on primordial
tensor fluctuations was derived from the measure-
ment of the CMB temperature power spectrum [35,
36].Unfortunately, on large angular scales where the ten-
sor contribution to the temperature power spectrum is
most significant, the scalar contribution to the temper-
ature power spectrum is much larger, and constraints
on tensor fluctuations from temperature measurements
alone are hindered by the relatively large cosmic variance
of the temperature fluctuations.

Ongoing and future observations of the CMB will dras-
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Full-sky
∑
n `n = even

∑
n `n = odd

Flat-sky left-handed = right-handed left-handed = (−) right-handed

Non-vanishing 〈TTT 〉, 〈TEE〉, 〈TTE〉, 〈BTT 〉, 〈BEE〉,
in parity-conserving universe 〈EEE〉, 〈BBE〉, 〈BBT 〉 〈BET 〉, 〈BBB〉

TABLE I: Properties of full-sky and flat-sky three-point functions in a parity-conserving universe. The first column contains
three-point functions studied in the standard analysis. The second column (and in particular 〈BTT 〉) is the focus of this
work. There are additional non-vanishing three-point functions when parity conservation is violated which are studied e.g. in
Refs. [14, 15].

tically improve the constraints on primordial tensor fluc-
tuations by searching for B-mode polarization on large
angular scales. Several such experiments are currently
underway, with the most recent constraints coming from
the BICEP/Keck experiment [37]. The biggest astro-
physical obstacles in constraining the primordial signal
are the contributions from dust [38, 39] and lensing of E-
modes to B-modes [40]. For the former, we will have to
rely on multi-frequency information to separate the dust
component from the primordial signal. For the latter,
delensing will become crucial for removing lens-induced
fluctuations and requires a high-fidelity lensing map [41].

While the usual searches for non-Gaussianity focus on
the N -point statistics of scalar fluctuations, in this pa-
per we will discuss the relatively unexplored observa-
tional signatures of non-Gaussian correlations involving
tensor fluctuations. Since tensor fluctuations source T ,
E, and B fluctuations, observational searches for bispec-
tra constructed from T and E fluctuations naturally place
constraints on both scalar and tensor non-Gaussianity.
Just as in the case of the power spectrum, the contri-
butions to T and E fluctuations from scalars are much
larger than those of tensors, and so constraints on tensor
non-Gaussianity with these bispectra are relatively weak.
On the other hand, bispectra involving primordial B-
mode fluctuations are sourced by tensor non-Gaussianity
but not by scalar non-Gaussianity, and are therefore ca-
pable of providing a much tighter constraint on tensor
non-Gaussianity. Since observations of B-modes are not
presently cosmic variance-limited, there is a great deal of
room for improvement with future observations of the
CMB polarization. This reasoning strongly motivates
searching for bispectra involving primordial B-modes as
a probe of primordial non-Gaussianity. In this paper, we
explore in detail how the 〈BTT 〉 bispectrum can be used
to constrain tensor non-Gaussianity and thereby give us
insight into the physics of the early universe.

The primordial tensor-scalar-scalar bispectrum is nat-
urally non-vanishing, and in fact is of the same order
in slow-roll parameters as the primordial scalar-scalar-
scalar bispectrum in the simplest models of single-field
slow-roll inflation [42]. In more general models, the shape
and amplitude of the tensor-scalar-scalar bispectrum can
differ quite significantly from those predicted in the sim-
plest models, so observational constraints on this quan-
tity give non-trivial insight into the physics of the early
Universe [43]. The primordial tensor-tensor-scalar and

tensor-tensor-tensor bispectra are also non-vanishing in
single-field slow-roll inflation, as well as in more gen-
eral models [42–44]. Primordial non-Gaussianity involv-
ing tensors provides a set of observables which are dis-
tinct from and complementary to scalar non-Gaussianity.
Also, just as in the case of scalars [16], there is in prin-
ciple much more information in tensor non-Gaussianity
than in the tensor power spectrum alone.

Despite the differing intrinsic parity of temperature
fluctuations and B-modes, the 〈BTT 〉 bispectrum is non-
vanishing for particular combinations of multipoles. To
be more specific, under spatial inversion the multipole
coefficients for T , E, and B transform as [45]

aT`m → (−1)`aT`m ,

aE`m → (−1)`aE`m ,

aB`m → (−1)`+1aB`m.

These properties along with statistical isotropy imply
that 〈aB`maT`′m′〉 = 〈aB`maE`′m′〉 = 0 in a parity-conserving
universe since these quantities change sign under spatial
inversion. On the other hand, we find that under spatial
inversion, the bispectrum of interest transforms as

〈aT`1m1
aT`2m2

aB`3m3
〉 → (−1)`1+`2+`3+1〈aT`1m1

aT`2m2
aB`3m3

〉,

which therefore must vanish in a parity-conserving uni-
verse for

∑
n `n = even but not for

∑
n `n = odd (see

Table I).
The above remarks straightforwardly generalize to all

forms of non-Gaussianity. In a parity-conserving and sta-
tistically isotropic universe, any connected N -point func-
tion constructed from T , E, and B fluctuations contain-
ing an odd number of B-mode fluctuations vanishes for∑
n `n = even but not for

∑
n `n = odd, while those con-

taining an even number of B-mode fluctuations vanish
for
∑
n `n = odd but not for

∑
n `n = even. The case of

N = 2 is special since statistical isotropy always implies
that `1 + `2 = even for two-point statistics.

Let us briefly summarize our motivations. Non-
Gaussian CMB statistics involving B-mode fluctuations
are non-vanishing under standard assumptions about the
properties of our Universe. Existing data can be used to
place new constraints on these quantities. Present mea-
surements of B-modes are not cosmic-variance limited, so
upcoming lower-noise CMB polarization data will drasti-
cally improve upon our current capabilities in this regard.
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FIG. 1: Two triangles in multipole space that are mirrored
images of one another. The three-point function 〈ETT 〉 takes
the same value on both configuration, whereas 〈BTT 〉 changes
sign.

Measurements of these statistics can provide non-trivial
constraints on primordial non-Gaussianity involving ten-
sor fluctuations. Primordial tensor non-Gaussianity is in
general independent of primordial scalar non-Gaussianity
and is therefore a complementary probe of early-universe
physics.

The goal of this paper is to explore the potential of
the 〈BTT 〉 bispectrum as a probe of the primordial Uni-
verse. In Sec. II we discuss the geometric properties of
the 〈BTT 〉 bispectrum. In Sec. III we review the predic-
tions of single-field slow-roll inflation for the primordial
tensor-scalar-scalar bispectrum and discuss its proper-
ties. We construct the 〈BTT 〉 bispectrum in the flat-sky
limit in Sec. IV. We then forecast constraints this ob-
servable in Sec. V for current and future experiments.
We discuss the implications and future extensions of our
work in Sec. VI.

II. GEOMETRIC PROPERTIES OF THE 〈BTT 〉
BISPECTRUM

In this Section we outline the general geometric proper-
ties of the 〈BTT 〉 correlation function in the flat-sky ap-
proximation. We start by considering properties of cor-
relation functions involving the polarization tensor P ab.

A. Correlation functions involving the polarization
tensor P ab

Let us first consider the correlation function
〈T (x1)P ab(x2)〉. Statistical homogeneity implies that
this can only be a function of x12 ≡ x1 − x2. Since
P ab is a symmetric, trace-free tensor, so must be this
correlation function, which must therefore take the form

〈T (x1)P ab(x2)〉 = F (x12)
[
2x̂a12x̂

b
12 − δab

]
, (1)

where F only depends on the magnitude of x12 by statis-
tical isotropy. Using this result, we can easily show that

the correlation function in multipole space is of the form

〈T (`)P ab(`′)〉 = δ(2)(`+ `′)G(`)
[
2ˆ̀a ˆ̀b − δab

]
. (2)

Similarly, one can show that statistical homogene-
ity and isotropy imply that the three-point function
〈T (`1)T (`2)P ab(`3)〉 takes the form

〈T (`1)T (`2)P ab(`3)〉 = δ(2)(`1 + `2 + `3)

×
3∑

i≤j=1

Gij(`1, `2, `3)
[
ˆ̀a
i
ˆ̀b
j + ˆ̀a

j
ˆ̀b
i − (ˆ̀

i · ˆ̀j)δab
]
,(3)

where we also used the fact that P ab is symmetric
and trace-free. The symmetry of the three-point func-
tion under interchange of `1 and `2 moreover imposes
G22(`1, `2, `3) = G11(`2, `1, `3) and G23(`1, `2, `3) =
G13(`2, `1, `3).

We emphasize that an implicit underlying assumption
to derive these general results is that the physics govern-
ing temperature and polarization fluctuations is parity-
conserving, both at the level of initial conditions, and for
their subsequent evolution. Explicitly, this implies that
the antisymmetric Levi-Civita tensor ε cannot appear in
any of the above correlation functions.

B. Implications for E and B-modes

We recall that in the flat-sky limit, the E- and B-
mode decomposition of the polarization tensor field P ab

is obtained as follows [46]

∇2E ≡ ∂a∂bP
ab, (4)

∇2B ≡ εac∂
c∂bP

ab, (5)

where repeated indices are summed. While E is a scalar
quantity, B is a pseudo-scalar, or parity-odd observable:
its sign depends on the chosen handedness of the coordi-
nate system. In multipole space, we have

E(`) ≡ ˆ̀
a
ˆ̀
bP

ab(`), (6)

B(`) ≡ εac ˆ̀
c ˆ̀
bP

ab(`). (7)

Using these equations into Eq. (2), we obtain

〈T (`)E(`′)〉 = δ(2)(`+ `′)G(`), (8)

〈T (`)B(`′)〉 = 0, (9)

where the vanishing of the 〈BT 〉 correlation results from
the antisymmetry of ε.

Substituting Eq. (6) into Eq. (3), we see that
〈T (`1)T (`2)E(`3)〉 only depends on the magnitudes `i
and on the scalar products between the three multipoles.
The triangle condition `1 + `2 + `3 = 0 implies that the
scalar product of any two multipoles can be rewritten as
a function of the magnitudes only. We therefore obtain

〈T (`1)T (`2)E(`3)〉′ = G(`1, `2, `3), (10)
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FIG. 2: Two unique slices showing the primordial tensor-scalar-scalar bispectrum from single-field slow-roll inflation with k3
representing the wave vector of the tensor. Left: The bispectrum is enhanced when k3 � k1 ∼ k2 (top left corner). The
enfolded limit, i.e. k1 + k2 = k3 (bottom left edge), is suppressed, since then all momenta are aligned. Right: When one or
both scalar momenta k1 and k2 are aligned with the tensor momentum k3 (bottom left edge) the spectrum is suppressed as
compared to the equilateral configuration (top right).

where the prime indicates that we divided by δ(2)(
∑
`i)

and G is some function of the magnitudes `i, symmetric
under exchange of `1, `2.

Substituting Eq. (7) into Eq. (3), we see that some of
the terms vanish (e.g. the G33 term), but not all of them.
The final form of the 〈BTT 〉 correlation function is

〈T (`1)T (`2)B(`3)〉′ = (ˆ̀
1 × ˆ̀

3) H(`1, `2, `3)

+ (ˆ̀
2 × ˆ̀

3) H(`2, `1, `3), (11)

where ˆ̀
1 × ˆ̀

3 ≡ εac ˆ̀a1 ˆ̀c
3.

Geometrically, this can be understood as follows. Con-
sider two triangles in multipole space that are mirrored
images of one another in the way shown in Fig. 1. The
magnitudes of all wavenumbers are identical (hence the
scalar products between any two of them). However, the

cross products ˆ̀
1 × ˆ̀

3 and ˆ̀
2 × ˆ̀

3 take on opposite signs
on the two triangles. This implies that the values of the
tree-point function 〈ETT 〉 is identical on both triangles,
whereas 〈BTT 〉 has the same absolute value but takes a
different sign on the two mirrored triangles. A violation
of these symmetry properties would be an indicator for
parity-violating physics [47].

Finally, we note an analogy with gravitational lens-
ing reconstruction. One could use a cross product of the
CMB temperature gradient with itself, (∇T )× (∇T ), to
reconstruct the “curl” portion of deflection of CMB pho-
tons that would arise, e.g., from tensor fluctuations out
to the recombination surface [70]. This map would be an
estimate of a field with odd parity, and could be cross-
correlated with a map of B-mode polarization, which also
has odd parity, giving a nonzero result for a universe con-
taining primordial tensors.

III. PRIMORDIAL BISPECTRUM

In this section, we will discuss the properties of the
primordial tensor-scalar-scalar bispectrum predicted in
single-field slow-roll inflation, which were first obtained in
Ref. [42]. This model provides an example of tensor non-
Gaussianity in the simplest of inflationary models, which
we will use to motivate a template to compute the 〈BTT 〉
bispectrum. For more general models, the primordial
bispectrum will differ from the results presented here,
and modifications should be made to the template to
address these changes.

Following the work by Maldacena [42], for inflation
driven by a single slowly-rolling scalar field, the primor-
dial bispectrum of two scalar fluctuations and one tensor
fluctuation is given by〈

ζ(k1)ζ(k2)h±(k3)
〉

= (2π)3F 00±2(k1,k2,k3)

×δ(3) (k1 + k2 + k3) , (12)

where we have defined

F 00±2(k1,k2,k3) ≡ H4
∗

4M4
plε∗

I(k1, k2, k3)e∓ab(k3)ka1k
b
2,(13)

where H∗ and ε∗ are, respectively, the Hubble rate and
first slow-roll parameter during inflation, and

I(k1, k2, k3) ≡ 1

k31k
3
2k

3
3

×
(
−kt +

k1k2 + k2k3 + k1k3
kt

+
k1k2k3
k2t

)
.(14)

Let us now examine the transverse traceless polariza-
tion tensor e±ab more closely. It is defined such that

eλab(k̂)eλ
′

ab(−k̂) = 2δλλ′ , and when k̂ points in the z-
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direction, it is given by

e±ab(ẑ) =
1√
2

 1 ±i 0
±i −1 0
0 0 0

 . (15)

We write k̂i = (sin Θi cosφi, sin Θi sinφi, cos Θi) for
i = 1, 2, with 0 ≤ Θi ≤ π and 0 ≤ φi ≤ 2π. The triangle
constraint k1 + k2 + k3 = 0 imposes φ1 = φ2 ≡ φ, while
Θ1 and Θ2 are related through

sin Θ2 = −k1
k2

sin Θ1. (16)

We then find

e
(∓)
ab (k)k̂a1 k̂

b
2 = − sin Θ1 sin Θ2√

2
e∓2iφ

= −k1
k2

(sin Θ1)2√
2

e∓2iφ. (17)

We show F 00+2(k1,k2,k3)k21k
2
2k

2
3 for φ = 0 in Fig. 2.

The tensor-scalar-scalar bispectrum has two different
squeezed limits: one in which the wavenumber of the
tensor is much smaller than those of the scalars (kh �
kζ1 ∼ kζ2), and another in which the wavenumber of one
of the two scalars is much smaller than those of the other
scalar and of the tensor (kζ2 � kh ∼ kζ1). In the former
case, if the scalar wavenumbers are perpendicular to the
tensor wavenumber the bispectrum is enhanced. Con-
versely, the enfolded limit, when both scalar wavenum-
bers are roughly aligned with the tensor wavenumber the
bispectrum is suppressed by the polarization sum.

We propose a reference definition of the primordial
tensor-scalar-scalar bispectrum of the form

〈
ζ(k1)ζ(k2)h±(k3)

〉
= (2π)316π4A2

s

√
rfhζζNL δ

(3)

(
3∑

n=1

kn

)
×I(k1, k2, k3)e∓ab(k3)ka1k

b
2, (18)

with I(k, k, k) ∝ k−8 in a scale-invariant universe. For
single-field slow-roll inflation, I(k1, k2, k3) = I(k1, k2, k3)

and fhζζNL =
√
r/16, but these quantities will differ in more

general models.
In the squeezed limit where the tensor wavenumber is

much smaller than the wavenumbers of the scalars, the
properties of the bispectrum in single-field slow-roll in-
flation are entirely determined by the fact that the long-
wavelength tensor fluctuation is locally equivalent to an
anisotropic rescaling of coordinates [42]. Similar to the
case of scalar non-Gaussianity, this implies that there
exists no locally observable mode coupling between long-
wavelength tensors and short-wavelength scalar fluctua-
tions in single-field inflation [48, 49]. This tensor consis-
tency condition applies more broadly than the more fa-
miliar scalar consistency condition, since the same logic
will apply to any scalar field minimally coupled to grav-
ity, whether or not its energy density drives inflation [43].

For this reason, if single-field slow-roll inflation or some-
thing similar is responsible for the primordial fluctuations
we observe, we are unlikely to gain much insight into
the physics from the squeezed limit of the tensor-scalar-
scalar bispectrum, but it remains interesting to search
for deviations from the predictions of the simplest mod-
els. Despite these subtleties regarding the squeezed limit,
in what follows we will take Eq. (14) as our primordial
template.

A. On the normalization of fhζζNL

In the above we define fhζζNL ∼ 〈hζζ〉/〈ζζ〉3/2〈hh〉1/2.
Other choices can be found in the literature, but can
all be related to one another via a simple calculation.
Our reasoning for the definition above is two-fold. First,
from a primordial perspective, naively we would expect
the amplitude of the non-Gaussian signal to be propor-
tional to

√
r given the presence of a single h. Secondly,

in this way the measured bispectrum and it amplitude
will behave similar to the amplitude of the tensor power
spectrum when measured in the cosmic variance limit.
Using 〈BTT 〉 as our measure, the variance σBTT ∝

√
r

in this limit. Therefore σ(fhζζNL ) will be constant in the
cosmic variance limit and only change as a function of
`max, the maximum number of observed modes on the
sky.

IV. 〈BTT 〉 IN THE FLAT-SKY LIMIT

The full-sky CMB 〈BTT 〉 bispectrum has been worked
out before in Ref. [50–52] and using total angular mo-
mentum spherical harmonics in Ref. [53]. However, both
results lead to expressions that are not very transpar-
ent regarding the symmetries of this correlation function.
Here instead, we derive the spectrum in the flat-sky ap-
proximation were these symmetries, which we derived in
Sec. II, are immediately apparent. The results presented
here are accurate as long as we restrict ourselves to scales
` & 10. For the computation of the signal-to-noise ratio
in the next section, we will use this approximate form,
which should provide reasonably accurate results since
our forecasts focus on experiments that will most likely
not be able to map out the lowest multipoles. The flat-
sky definition of the bispectrum takes the form [54]

〈aT (`1)aT (`2)aB(`3)〉 = (2π)2δ(2)(
∑

`i)B
TTB
`1`2`3 . (19)

In the flat-sky approximation the temperature fluctua-
tion arising from primordial scalar perturbations is given
by [50–52]

aζT (`) =

∫ τ0

0

dτ

∫
d3k

(2π)3
ζ(k)e−ik

zD

×SζT (k, τ)(2π)2δ(2)
(
k‖D − `

)
, (20)
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FIG. 3: The 〈BTT 〉 bispectrum in the fly-sky limit computed from Eq. (22) normalized using the analytical form of the local
〈TTT 〉 bispectrum. We see explicitly that the 〈BTT 〉 bispectrum changes sign under the interchange of of the two T multipoles
`1 and `2 and vanishes when `1 = `2. The overall amplitude of 〈BTT 〉 for our chosen template is almost three orders of
magnitude smaller than the local template 〈TTT 〉 bispectrum from scalars.

where τ is the conformal time, τ0 is its value today, D ≡
τ0−τ , k‖ is the component of k parallel to the plane of the

sky, kz its projection along the line of sight, and SζT (k, τ)
is the scalar temperature source function. The B-mode
fluctuation arising from primordial tensor perturbations
is given by [50–52]

ahB(`) =

∫ τ0

0

dτ

∫
d3k

(2π)3

∑
±
±h±(k)e−ik

zD

×2i
kz

k
ShP (k, τ)(2π)2δ(2)

(
k‖D − `

)
, (21)

where ShP (k, τ) is the tensor polarization source function
After some algebra, using Eq. (19), Eq. (20) and

Eq. (21) and using the primordial input spectrum
Eq. (18) and applying the thin-shell approximation [54]
we obtain (see Appendix A)

BTTB`1`2`3 = 16π2A2
s

√
rfhζζNL (`1 × `3)

×
∫∫

dkz1dk
z
2 I

(
kR1 , k

R
2 , k

R
3

)
×∆ζ

T (kz1 , `1)∆ζ
T (kz2 , `1)∆h

P (kz3 , `3)

×
√

2kz3
kR3 `

2
3

[kz1(`2 · `3)− kz2(`1 · `3)] ,(22)

where the integrals over kz1 , k
z
2 run from −∞ to +∞,

kz3 ≡ −(kz1 + kz2), and kRi ≡
√

(kzi )2 + (`i/DR)2, with
DR = τ0 − τR, where τR is the conformal time at the
peak of the CMB visibility function, and, for X = T, P
and s = ζ, h,

∆s
X(kzi , `i) ≡

∫ τ0

0

dτ

D2
SsX(kRi )e−ik

i
zD̃, (23)

with D̃ = τ − τR. Eq. (22) clearly takes the general
form Eq. (11), and as a consequence has the symmetry
properties discussed in Sec. II.

We show BTTB`1`2`3
for several slices in Fig. 3. While we

have chosen a particular template for the presentation
here, we emphasize that in principle forecasted bounds

on fhζζNL can be obtained for any model that predicts the
coupling of two scalars and a tensor by using the appro-
priate k-dependent shape I(k1, k2, k3). In this paper we
will use the shape of Eq. (14) as an example, but will

not assume a specific amplitude for fhζζNL unless stated
otherwise.

V. CMB FORECASTS

In this section, we forecast the CMB constraints on pri-
mordial tensor-scalar-scalar non-Gaussianity which can
be obtained from the 〈BTT 〉 bispectrum. Our analysis
does not include possible contributions to the observed
〈BTT 〉 bispectrum from lensing, foregrounds, or system-
atic effects. We also neglect late-time effects, analagous
to those that are known to produce 〈TTT 〉 correlations
at the level of fNL ∼ 1 even for purely Gaussian initial
conditions [48, 49, 57, 58]. We leave the computation of
these contributions to future work.

A. Qualitative considerations

Before we compute the signal-to-noise ratio, let us
make some qualitative estimates. The temperature fluc-
tuation is mostly sourced by primordial scalar fluctua-
tions, while the B-mode polarization is sourced by pri-
mordial tensor fluctuations:

T ∼ ST ζ, (24)

B ∼ SB h. (25)

The 〈BTT 〉 and 〈TTT 〉 three-point functions therefore
have the following ratio:

〈BTT 〉
〈TTT 〉 ∼

SB
ST

〈hζζ〉
〈ζζζ〉 . (26)

We assume that the temperature fluctuation is measured
up to cosmic variance, implying σ2

T = σ2
T,cv ∼ S2

T 〈ζ2〉. In



7

�� �� ��� ��� ����
�����
�����
�����
�����
�����
�����
�����
�����

ℓ

ℓ(
ℓ+
�)
�
ℓ��
/�
π
[μ
�
� ]

���� [����]
����

�� �� ��� ��� ����
-����

�

����

����

����

ℓ

~
� ℓ

ℓℓ
/�

ℓℓ
ℓ

��
��
��
�� ���� [����]

����

FIG. 4: Top: the B-mode power spectrum computed on the full sky and in the flat-sky, thin-shell, approximation. The flat-sky
approximation holds all the way down to ` ' 10. Bottom: the local-type temperature bispectrum in the full sky and flat sky
(thin-shell) for `1 = `2 = `3. There are some differences on large scales, but for computing the signal-to-noise ratio we do not
expect these to lead to significant deviations. Note that for purposes of presentation, the total spectrum is divided by the large
scale analytical limit of the local bispectrum. [55, 56].

contrast, accounting for instrumental noise, the variance
of the B-mode fluctuation is

σ2
B ∼ S2

B〈h2〉
(

1 +
σ2
B,inst

σ2
B,cv

)
, (27)

where σ2
B,cv ∼ S2

B〈h2〉 is the cosmic variance of the pri-

mordial B-modes and σ2
B,inst is the instrumental noise

(and in practice also contains residual B-modes from
lensing and foregrounds). As a consequence, the ratio
of the variance of the 〈BTT 〉 estimator to that of the
〈TTT 〉 estimator is

σ2
BTT

σ2
TTT

∼ σ2
B(σ2

T )2

(σ2
T )3

∼ σ2
B

σ2
T

∼
(

1 +
σ2
B,inst

σ2
B,cv

)
S2
B

S2
T

× r, (28)

where r ≡ 〈h2〉/〈ζ2〉 is the tensor-to-scalar ratio. The
ratio of the signal-to-noise ratio for the 〈BTT 〉 estimator
to that of the 〈TTT 〉 estimator is therefore

(S/N)2BTT
(S/N)2TTT

∼ 1

r

σ2
B,cv

σ2
B,cv + σ2

B,inst

( 〈hζζ〉
〈ζζζ〉

)2

. (29)

Now, while 〈h2〉/〈ζ2〉 = r � 1, the ratio of the three-
point functions 〈hζζ〉/〈ζζζ〉 is of order O(ε0) in single-
field slow-roll inflation (and not of order

√
ε as one might

naively expect). We therefore see that in the limit that
the instrumental noise for B is subdominant to cosmic
variance (σ2

B,inst � σ2
B,cv), the expected signal-to-noise

ratio of 〈BTT 〉 is larger than that of 〈TTT 〉 by a factor

1/
√
r � 1. In the other limit σ2

B,inst � σ2
B,cv, this ratio

saturates to a value independent of r (since σ2
B,cv ∝ r).

Similarly, the advantage of using 〈BTT 〉 over 〈TTT 〉 to
constrain 〈hζζ〉 is immediately apparent from Eq. (29) by
replacing 〈hζζ〉/〈ζζζ〉 → 1, showing that for sufficiently
low values of r, 〈BTT 〉 will always provide a better con-
straint than 〈TTT 〉 on 〈hζζ〉 independent of the model.

Therefore, we see that while lower noise measurements
of temperature fluctuations will not lead to significant
further improvement of the measurement of primordial
non-Gaussianity from 〈TTT 〉, there is a great deal of
room for improvement with 〈BTT 〉 as a probe of pri-
mordial physics.

B. Quantitative calculation

In the flat-sky approximation the signal-to-noise ratio
is given by the following integral over multipoles (rather
than a discrete sum in the full-sky case) [59]:

(
S

N

)2

=
fsky
4π3

∫
d2`2

∫
d2`3

(
BTTB(−`2−`3),`2,`3

)2
CTT`1 CTT`2 CBB`3

, (30)

where C` = C` + N` with C` is the angular power spec-
trum, N` the noise, and we integrated out the `1 direc-
tion.

To compute the signal-to-noise ratio, we modified
CAMB [60, 61] and CLASS [62] to extract the scalar and
polarization source functions. We then computed the
bispectrum using Eq. (22) and the signal-to-noise ratio
using Eq. (30). For consistency we also used the flat-sky
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FIG. 5: Density plot showing the CMB modes to be measured
in order to obtain a detection of the 〈BTT 〉 bispectrum, show-
ing the contributions to the inverse noise or Fisher matrix el-
ement. The color map on the bottom left, which uses a linear
scale, shows the contribution as a function of the B multipole
and one of the two T multipoles for the CMB-S4 case. The
other panels show the collapsed one-dimensional distributions
for CMB-S4 as well as three other cases. The signal is con-
centrated in slices with small `B and a wide range of values of
`T . We show constraints from several experiments, assuming
no sample variance in the B modes, as well as with the cosmic
variance limit for r = 0.01.

C` for our variance estimate. We compared our C` to the
full-sky results and found good agreement for ` & 10 as
can be seen in the top panel of Fig. 4. We also show the
diagonal of the 〈TTT 〉 flat sky bispectrum versus the full-
sky version in the bottom panel of Fig 4. Unlike Ref. [55],
we find good agreement all the way down to ` ∼ 10− 20.
For purposes of computing the signal-to-noise ratio of the
〈BTT 〉 bispectrum, the small amplitude differences are
not a concern. That being said, there is potentially a
significant contribution to the signal-to-noise ratio in the
lowest-` B-modes, given the presence of the reionization
bump at low ` which is not included due to the approx-
imations we have made here. We will leave the full-sky
computation including these modes for a future study.

All results are obtained using a Planck fiducial cos-
mology, kmax = 0.64 Mpc−1 for scalars and kmax = 0.17
Mpc−1 for tensors. We performed calculations to max-
imal multipoles of `T,max = 4500 for the T modes
and to `B,max = 500 for the B modes. On small
scales in the temperature, foreground fluctuations such
as the emission from dusty, star-forming galaxies and
the thermal Sunyaev-Zel’dovich effect will reduce the
effective maximal temperature multipole for primordial

studies to about 3000–4000. Given multifrequency data,
these could in principle be removed, leaving the kinetic
Sunyaev-Zel’dovich effect as the dominant foreground on
small scales. Depending on the amplitude of this sig-
nal, this could make the maximal multipole as large as
`T,max ∼ 4500 [63].

The bispectra are computed on a grid with ∆` = 1 for
` ≤ 100, ∆` = 10 for 100 ≤ ` ≤ 500 and ∆` = 20 for
all values above ` = 500. We use linear interpolation to
obtain the curves shown in Fig. 5 and 6.

We assume that the noise power spectra in the T and
B measurements are given by

NY Y
` = (wY0 )2 exp(`2σ2

b ), (31)

for Y ∈ {T,B}, and where the noise levels w0 and beam-
sizes σb are given in Table II.

In order to better understand which modes contribute
to the signal, in Fig. 5 we show the inverse-variance den-
sity, defined using the free parameters in our parame-

terization, as d2[σ−2(
√
rfhζζNL )]/d`T d`B . This is equiva-

lent to the signal-to-noise ratio, Eq. 30, for a model with√
rfhζζNL = 1. As expected, the signal is concentrated on

slices with `B � `T , and T modes contribute down to
very small scales (`T ' several thousand). For compar-
ison, we show a similar plot for the 〈TTT 〉 bispectrum
resulting from local-type primordial non-Gaussianity in
Fig. 8.

In Fig. 6 and Fig. 7 we show the forecasts for an analy-
sis with publicly-available data, B(Planck)×TT (Planck);
currently-taken data, B(BICEP/Keck)×TT (SPTpol);
and futuristic data, B(CMB-S4)×TT (CMB-
S4). Although not shown, a measurement from
B(SPIDER)×TT (SPT) [64] would be similar to that
from BICEP/Keck and SPTpol: the noise levels are
lower, but that is offset by the relatively small sky
coverage of BICEP/Keck-SPTpol. We consider two
distinct scenarios, represented by the limiting cases of
Eq. (29): first, the case that there is no signal from
primordial tensors where we set CBB` = NBB

` ; second,
the B-mode cosmic variance limit for various values of
the tensor-to-scalar ratio r. All bounds are shown as
functions of `Tmax; Fig. 5 shows that multipoles with
`B & 100 hardly contribute to the final bounds.

In single-field slow-roll inflation, it is predicted that

fhζζNL =
√
r/16, and so in the event that cosmological

B-modes are detected, this will provide a consistency
check on the model. As can be seen from Fig. 7, sample

variance prevents us from detecting fhζζNL from 〈BTT 〉 if
single-field slow-roll inflation is the source of the fluctu-

ations we observe. A detection of fhζζNL would therefore
imply that single-field slow-roll inflation is not solely re-
sponsible for the observed fluctuations.

With an experiment like CMB-Stage IV [65] we an-

ticipate that we can constrain
√
rfhζζNL ∼ O(0.1)f

−1/2
sky .

It is remarkable that the potential constraint on primor-
dial non-Gaussianity using 〈BTT 〉, which, given a similar
shape and normalization of the tensor-scalar-scalar bis-
pectrum and the scalar-scalar-scalar bispectrum, lies an
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B expt. B noise (µK-’) B beam (’) `b T expt. T noise (µK-’) T beam (’) `b area (sq. deg.)
Planck 60 5 1600 Planck 30 5 1600 33,000
BICEP/Keck 3 60 130 SPTpol 5 1 8100 625

CMB-S4
√

2 1 8100 CMB-S4 1 1 8100 33,000

TABLE II: Assumed experimental parameters for forecasts. Beamsizes in arcmin are quoted as FWHM, related to σb in Eq.
31 by a factor of 2

√
2 ln 2. For reference we also show `b ≡ 1/σb.
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FIG. 6: Forecasts for σ(
√
rfhζζNL ) for various CMB experiments

as a function of `max. The colored lines present constraints
when cosmic variance is negligible. The figure shows that
cosmic variance would be subdominant for current and near
future experiments if r = 0.01. For an experiment like CMB-
Stage IV the total variance would be dominated by cosmic
variance and not by instrumental noise unless r . 0.001 (with
`Tmax = 4500).

order of magnitude below the optimal CMB constraint on

the local-type scalar non-Gaussianity fζζζNL . Furthermore,
it was shown in Ref. [50] that the 〈TTT 〉 bispectrum

could provide constraints on
√
rfhζζNL ∼ O(10)f

−1/2
sky . The

forecasts presented in this paper show that using 〈BTT 〉
has the potential to improve that constraint by nearly
two orders of magnitude. In order to fully exploit the
power of 〈BTT 〉 one should consider more general mod-
els of the early Universe that could potentially violate
this bound. We will leave this to future work.
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FIG. 7: Forecasts for σ(
√
rfhζζNL ) for various CMB experi-

ments. This figure illustrates that current experiments are
all noise dominated for allowed values of r. CMB-Stage
IV is comic variance dominated unless r . 0.005 (with
`Tmax = 3400). Cosmic variance limit can only be reduced
if we consider more modes, i.e. by increasing `Tmax).

VI. DISCUSSION AND CONCLUSION

We have explored the potential of the 〈BTT 〉 bispec-
trum as probe of the early universe. The odd intrinsic
parity of B-modes gives this bispectrum some properties
which differ from that of the 〈TTT 〉 bispectrum, but both
are generically non-vanishing in a parity-conserving uni-
verse, and are sourced by primordial bispectra which are
predicted to be of the same order in slow-roll parameters
in single-field slow-roll inflation.

One advantage of the 〈BTT 〉 bispectrum is that the
signal suffers less from cosmic variance than its 〈TTT 〉
counterpart for constraining the tensor-scalar-scalar bis-
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pectrum. Our analysis shows that with this observ-
able it should be possible to constrain the level of non-

Gaussianity to σ(
√
rfhζζNL ) ∼ O(0.1)f

−1/2
sky . For compar-

ison, the CMB can only measure the local-type scalar

bispectrum down to σ(fζζζNL ) ∼ O(1) [12, 66] and with up-
coming large-scale-structure surveys aimed at constrain-

ing non-Gaussianity using galaxies, σ(fζζζNL ) ∼ 0.2 [13].
Our analysis was done in the flat-sky limit, valid for

multipoles ` & 10, which suffices for ground-based detec-
tors. It will be important to extend this analysis to the
full sky since there is potentially significant signal in the
lowest ` modes, given the presence of the relatively large
B fluctuation from scattering at reionization. This sig-
nal can most likely only be mapped out by a dedicated
satellite, such as the proposed LiteBIRD [67], PIXIE [68]
or COrE [69] experiments.

We focused in this work on a template for the 〈BTT 〉
bispectrum motivated by single-field slow-roll inflation,
which maximizes when large-scale B modes are corre-
lated with small-scale T modes. This shape has some
experimental advantages, since a search for such a bis-
pectrum could be performed, for instance, by cross-
correlating a map of B-modes on large scales from a cur-
rent or upcoming ground-based CMB experiment with
small-scale T fluctuations, such as those measured with
the Planck satellite. On the other hand, it would be use-
ful to consider other shapes for the 〈BTT 〉 bispectrum,
perhaps motivated by specific early-universe models.

In this work we have not considered contamination
from dust, systematics, or lensing. Dust is a well-known
contaminant in estimates of the 〈BB〉 power spectrum on
large scales at the frequencies probed with ground-based
experiments. Estimates of the 〈BTT 〉 bispectrum will in
principle be sensitive to correlations between large-scale
dust polarization and small-scale dust intensity; while
this may be less of an issue than in the power spectrum
measure, this needs to be investigated in future work.
Similarly, instrumental systematics which affect the mea-
sure of B on large scales should be decoupled from those
that affect T on small scales, making this analysis less
sensitive to systematics than the 〈BB〉 power spectrum.
Finally, lensing converts E-mode polarization to B-mode
polarization. As with measurements of the 〈BB〉 power
spectrum, delensing to reduce effective noise from lens-
ing needs to be performed when measuring the 〈BTT 〉
bispectrum. In a universe with primordial gravitational
waves, the 〈BTT 〉 bispectrum will also contain a non-
primordial signal on very large scales arising from corre-
lations between B-modes from Thomson scattering after
reionization and the curl mode of CMB lensing, which af-
fects pairs of temperature modes [70]. This is analogous
to the scattered E-mode–lensing correlation induced by
scalars in estimates of the 〈ETT 〉 bispectrum [71].

We have focused on the 〈BTT 〉 correlation function.
However, other combinations sensitive to the coupling
between scalars and tensors will add to the total signal-
to-noise ratio. In particular, 〈BEE〉 and 〈BTE〉 are ex-
pected to have similar constraining power. In addition,

0 1000 2000 3000 4000

`T

0

1000

2000

3000

4000

` T

d2[σ−2(f ζζζNL )]/d`Td`T

10−10

10−9

10−8

10−7

10−6

d
[(
σ
−

2 (f
ζ
ζ
ζ

N
L

))
2 ]/
d
` T

Planck
SPTpol
CMB-S4
CV limit

10−10 10−9 10−8 10−7 10−6

d[(σ−2(f ζζζNL ))]/d`T

FIG. 8: Same as 5, but for the local-type TTT bispectrum,
sourced by scalars. The signal is concentrated at very low `T
and along the diagonal, where both `T are equal.

similar to the use of E-modes for the scalar bispectrum
[66], the B and E modes are projected through functions
that have different nulls, which improves the mapping
from the primordial space. In summary, the 〈BTT 〉 bis-
pectrum and other non-Gaussian correlations involving
B-modes open up a new window into the early Universe.
Ongoing and future CMB experiments will naturally
make observations which allow us to carry out searches
for and place non-trivial constraints on primordial tensor
non-Gaussianity. While more theoretical work remains to
discover the full value of B-mode non-Gaussianity, this
new set of observables has the potential to be a very rich
set of tools for probing primordial physics.
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Appendix A: The flat-sky 〈BTT 〉 bispectrum

In this appendix, we work out the form of the three-point function 〈BTT 〉 in the flat-sky approximation. Our
derivation follows closely that of the Appendix of Ref. [54].

We start by rewriting D = DR + D̃, where DR ≡ τ0 − τR and D̃ ≡ τR − τ , in the exponential factors of Eqs. (20)
and (21). The Dirac delta function in the primordial three-point function ensures that the DR dependence drops of
the exponential factors. Using Eqs. (20) and (21), we then get the following three-point function

〈
aζT (`1)aζT (`2)ahB(`3)

〉
=

3∏
n=1

[∫ τ0

0

dτn

∫
d3kn
(2π)3

e−ik
z
nD̃n(2π)2δ(2)

(
Dnk

‖
n + `n

)]
× SζT (k1, τ1)SζT (k2, τ2)

2ikz3
k3

ShP (k3, τ3)
∑
±
±
〈
ζ (k1) ζ (k2)h± (k3)

〉
. (A1)

We now define

2ikz3
k3

∑
±
±
〈
ζ (k1) ζ (k2)h± (k3)

〉
≡ (2π)3F (k1,k2,k3)δ(3)

(∑
n

kn

)
. (A2)

Assuming the kernel F does not vary significantly across the width of the last-scattering surface (i.e. specifically, that
it does not change much as ki varies by a fractional amount ∆τR/τR ∼ 10−2 [54]), we can take it out of the time

integrals, by setting k
||
n ≈ `n/DR inside F . Using k

||
n = `n/Dn, the Dirac function in Eq. (A2) simplifies to

δ(3)

(∑
n

kn

)
= δ(1)

(∑
n

kzn

)
×D2

Rδ
(2)

(∑
n

`n +
∑
n

D̃n

DR
`n

)
≈ D2

Rδ
(1)

(∑
n

kzn

)
δ(2)

(∑
n

`n

)
. (A3)

Because the last equality is only approximate, the bispectrum does not exactly vanish for modes that do not form a
closed triangle; however, it is exponentially suppressed on these configurations [72].

These approximations allow to factorize the expression for the bispectrum. Defining ∆s
X(kzi , `i) as in Eq. (23), we

arrive at〈
aζT (`1)aζT (`2)ahB(`3)

〉
≈ δ(2)(`1 + `2 + `3)

∫∫
dkz1dk

z
2∆ζ

T (kz1 , `1)∆ζ
T (kz2 , `2)∆h

P (kz3 , `3)F (k1,k2,k3), (A4)

where the integrand is to be evaluated at kz3 = −(kz1 + kz2) and k
||
n = `n/DR inside F .

The last step is to derive an explicit expression for F . Using Eq. (18) and our definition (A2) we get

F (k1,k2,k3) = 16π4A2
sf
hζζ
NL I(k1, k2, k3)23/2

kz3
k3
G(k1,k2,k3), (A5)

where we have defined

G(k1,k2,k3) ≡ D2
R

i√
2

∑
±
±e∓ab(k3)ka1k

b
2. (A6)

Using Eq. (15), we have, in a basis whose third axis is along k3,

∑
±
±e∓ab(k3) = −i

√
2

0 1 0
1 0 0
0 0 0

 . (A7)

We can find the polarization tensor for an arbitrary direction by performing a standard rotation on each axis of the
polarization tensor. For n̂ = (sin θ cosφ, sin θ sinφ, cos θ), the standard rotation matrix S(n̂) is given by [45]

Sab(n̂) ≡

cos θ cosφ − sinφ sin θ cosφ
cos θ sinφ cosφ sin θ sinφ
− sin θ 0 cos θ

 . (A8)
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The polarization sum for k3 = k3(sin θ cosφ, sin θ sinφ, cos θ) in an arbitrary direction is such that

1

D2
R

G(k1,k2,k3) = sin θ [− (kz1k
y
2 + ky1k

z
2) cosφ+ (kz1k

x
2 + kx1k

z
2) sinφ]

+ cos θ [(ky1k
x
2 + kx1k

y
2) cos(2φ) + (−kx1kx2 + ky1k

y
2) sin(2φ)] . (A9)

Due to rotational invariance, we can, without loss of generality, choose k3 to have vanishing y-component. Once we
compute the bispectrum for this choice of k3, all bispectra with general k3 can be obtained by rotation about the
z-axis. For k3 in the xz-plane, the polarization sum gives

1

D2
R

G(k1,k2,k3) = (ky1k
x
2 + kx1k

y
2)
kz3
k3
− (ky1k

z
2 + kz1k

y
2)
kx3
k3

=
ky1
k3

(kx2k
z
3 − kz2kx3 ) + (1↔ 2). (A10)

Using the triangle condition, and substituting k
||
i = (kxi , k

y
i ) by `i/DR, we rewrite this expression as

G(k1,k2,k3) =
`y1
k3

(kz2`
x
1 − kz1`x2) + (1↔ 2) = 2

`y1
k3

(kz2`
x
1 − kz1`x2), (A11)

where the last equality arises from the fact that we chose k3 in the xz-plane, implying that `y3 = 0 = `y1 + `y2.

Finally, we may rewrite `y1 = ˆ̀
3 × `1 and `x1 = ˆ̀

3 · `1, arriving at

G(k1,k2,k3) =
2

k3`23
(`1 × `3) [kz1(`2 · `3)− kz2(`1 · `3)] , (A12)

an expression which is symmetric under exchange of (1 ↔ 2) since `2 × `3 = −`1 × `3. The scalar products can be
expressed in terms of magnitudes through 2`1 · `3 = `22 − `21 − `23.

Inserting this expression into Eq. (A5) and then into Eq. (A4) gives the final expression for the flat-sky bispectrum,
Eq. (22). Using the property ∆s

X(−kzi ) = ∆s
X(kzi )∗, and the fact that F (k1,k2,k3) ∝ kz3kz1 , kz3kz2 , one can easily show

that the three-point function (A4) is real, as it should. Finally, we also see that it has the same form as that derived
in Eq. (11) from symmetry considerations.
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