228 research outputs found

    Cell arrest and cell death in mammalian preimplantation development

    Get PDF
    The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development

    Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 2 – The Limb, Nadir and Occultation (LNO) channel

    Get PDF
    This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).The Nadir and Occultation for MArs Discovery (NOMAD) instrument is a 3-channel spectrometer suite on the ESA ExoMars Trace Gas Orbiter. Since April 2018, when the nominal science mission began, it has been measuring the constituents of the Martian atmosphere. NOMAD contains three separate spectrometers, two of which operate in the infrared: the Solar Occultation (SO) channel makes only solar occultation observations, and therefore has the best resolving power (∼20,000) and a wider spectral region covering 2.2–4.3 ​μm. The Limb, Nadir and Occultation (LNO) channel covers the 2.2–3.8 ​μm spectral region and can operate in limb, nadir or solar occultation pointing modes. The Ultraviolet–VISible (UVIS) channel operates in the UV–visible region, from 200 to 650 ​nm, and can measure in limb, nadir or solar occultation modes like LNO. The LNO channel has a lower resolving power (∼10,000) than the SO channel, but is still typically an order of magnitude better than previous instruments orbiting Mars. The channel primarily operates in nadir-viewing mode, pointing directly down to the surface to measure the narrow atmospheric molecular absorption lines, clouds and surface features in the reflected sunlight. From the depth and position of the observed atmospheric absorption lines, the constituents of the Martian atmosphere and their column densities can be derived, leading to new insights into the processes that govern their distribution and transport. Surface properties can also be derived from nadir observations by observing the shape of the spectral continuum. Many calibration measurements were made prior to launch, on the voyage to Mars, and continue to be made in-flight during the science phase of the mission. This work, part 2, addresses the aspects of the LNO channel calibration that are not covered elsewhere, namely: the LNO ground calibration setup, the LNO occultation and nadir boresight pointing vectors, LNO detector characterisation and nadir/limb illumination pattern, instrument temperature effects, and finally the radiometric calibration of the LNO channel. An accompanying paper, part 1 (Thomas et al., 2021, this issue), addresses similar aspects for SO, the other infrared channel in NOMAD. A further accompanying paper (Cruz-Mermy et al., 2021, this issue) investigated the LNO radiometric calibration in more detail, approaching the work from a theoretical perspective. The two calibrations agree with each other to within 3%, validating each calibration method. © 2022 The Authors. Published by Elsevier Ltd.This project acknowledges funding by the Belgian Science Policy Office (BELSPO), with the financial and contractual coordination by the ESA Prodex Office (PEA 4000103401, 4000121493), by Spanish Ministry of Science and Innovation (MCIU) and by European funds under grants PGC2018-101836-B-I00 and ESP2017-87143-R (MINECO/FEDER), as well as by the UK Space Agency through grants ST/V002295/1, ST/V005332/1 and ST/S00145X/1 and ST/R001405/1 and Italian Space Agency through grant 2018-2-HH.0. This work was supported by the Belgian Fonds de la Recherche Scientifique – FNRS under grant number 30442502 (ET_HOME). The IAA/CSIC team acknowledges financial support from the State Agency for Research of the Spanish MCIU through the ‘Center of Excellence Severo Ochoa’ award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). SR thanks BELSPO for the FED-tWIN funding (Prf-2019-077 - RT-MOLEXO)

    Explanation for the increase in high altitude water on Mars observed by NOMAD during the 2018 global dust storm

    Get PDF
    The Nadir and Occultation for MArs Discovery (NOMAD) instrument on board ExoMars Trace Gas Orbiter (TGO) measured a large increase in water vapor at altitudes in the range of 40‐100 km during the 2018 global dust storm on Mars. Using a three‐dimensional general circulation model, we examine the mechanism responsible for the enhancement of water vapor in the upper atmosphere. Experiments with different prescribed vertical profiles of dust show that when more dust is present higher in the atmosphere the temperature increases and the amount of water ascending over the tropics is not limited by saturation until reaching heights of 70‐100 km. The warmer temperatures allow more water to ascend to the mesosphere. Photochemical simulations show a strong increase in high‐altitude atomic hydrogen following the high‐altitude water vapor increase by a few days

    The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter

    Get PDF
    The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 μm—the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7–1.6 μm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2–4.4 μm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.3 cm−1. TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described

    Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations

    Get PDF
    The oxygen emission at 557.7 nm is a ubiquitous component of the spectrum of the terrestrial polar aurora and the reason for its usual green colour1. It is also observed as a thin layer of glow surrounding the Earth near 90 km altitude in the dayside atmosphere2,3 but it has so far eluded detection in other planets. Here we report dayglow observations of the green line outside the Earth. They have been performed with the Nadir and Occultation for Mars Discovery ultraviolet and visible spectrometer instrument on board the European Space Agency’s ExoMars Trace Gas Orbiter. Using a special observation mode, scans of the dayside limb provide the altitude distribution of the intensity of the 557.7 nm line and its variability. Two intensity peaks are observed near 80 and 120 km altitude, corresponding to photodissociation of CO2 by solar Lyman α and extreme ultraviolet radiation, respectively. A weaker emission, originating from the same upper level of the oxygen atom, is observed in the near ultraviolet at 297.2 nm. These simultaneous measurements of both oxygen lines make it possible to directly derive a ratio of 16.5 between the visible and ultraviolet emissions, and thereby clarify a controversy between discordant ab initio calculations and atmospheric measurements that has persisted despite multiple efforts. This ratio is considered a standard for measurements connecting the ultraviolet and visible spectral regions. This result has consequences for the study of auroral and airglow processes and for spectral calibration

    Sensitive search of CH4 on Mars by SOFIA/EXES

    Get PDF
    We present the results of our sensitive search of CH4 on Mars using the Echelon-Cross-Echelle Spectrograph (EXES) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel

    Get PDF
    NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS. We focus upon the optical design and working principle where two telescopes are coupled to a single grating spectrometer using a selector mechanism
    corecore