160 research outputs found

    Abdominal epilepsy as an unusual cause ofabdominal pain: a case report.

    Get PDF
    Introduction: Abdominal pain, in etiology sometimes difficult to be defined, is a frequent complaint in childhood. Abdominal epilepsy is a rare cause of abdominal pain. Objectives: In this article, we report on 5 year old girl patient with abdominal epilepsy. Methods: Some investigations (stool investigation, routine blood tests, ultrasonography (USG), electrocardiogram (ECHO) and electrocardiograpy (ECG), holter for 24hr.) were done to understand the origin of these complaints; but no abnormalities were found. Finally an EEG was done during an episode of abdominal pain and it was shown that there were generalized spikes especially precipitated by hyperventilation. The patient did well on valproic acid therapy and EEG was normal 1 month after beginning of the treatment. Discussion: The cause of chronic recurrent paroxymal abdominal pain is difficult for the clinicians to diagnose in childhood. A lot of disease may lead to paroxysmal gastrointestinal symptoms like familial mediterranean fever and porfiria. Abdominal epilepsy is one of the rare but easily treatable cause of abdominal pain. Conclusion: In conclusion, abdominal epilepsy should be suspected in children with recurrent abdominal pain

    Noncommutative gravity coupled to fermions: second order expansion via Seiberg-Witten map

    Full text link
    We use the Seiberg-Witten map (SW map) to expand noncommutative gravity coupled to fermions in terms of ordinary commuting fields. The action is invariant under general coordinate transformations and local Lorentz rotations, and has the same degrees of freedom as the commutative gravity action. The expansion is given up to second order in the noncommutativity parameter {\theta}. A geometric reformulation and generalization of the SW map is presented that applies to any abelian twist. Compatibility of the map with hermiticity and charge conjugation conditions is proven. The action is shown to be real and invariant under charge conjugation at all orders in {\theta}. This implies the bosonic part of the action to be even in {\theta}, while the fermionic part is even in {\theta} for Majorana fermions.Comment: 27 pages, LaTeX. Revised version with proof of charge conjugation symmetry of the NC action and its parity under theta --> - theta (see new sect. 2.6, sect. 6 and app. B). References added. arXiv admin note: substantial text overlap with arXiv:0902.381

    PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa

    Get PDF
    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar

    Molecular Phylogenetic and Expression Analysis of the Complete WRKY Transcription Factor Family in Maize

    Get PDF
    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance

    Characterization of wound responsive genes in Aquilaria malaccensis.

    Get PDF
    We report on the isolation and characterization of several genes responsive to wounding in the tropical endangered tree Aquilaria malaccensis. Wounding triggers the formation of a fragrant substance inside the tree stem. Deduced amino acid of the cloned sequences exhibited sequence similarities to their respective homologs: transcription factors of the WRKY gene family (AmWRKY) and β-1,3-glucanase (AmGLU). A homolog to phenylalanine ammonia-lyase (AmPAL) from previous work was also included. All cDNA sequences were of partial lengths. We studied their expression profiles in a wounding-stress experiment. Mechanical wounding induces AmWRKY in an early response to wounding (3 h), and elevates AmPAL and AmGLU expressions after 16 h. It is possible that AmWRKY mediates early wounding response while AmPAL mediates response to fungal infection by co-inducing AmGLU. Their homologs in other plants are known to inhibit fungal growth. Our data provide the first insight into the mechanisms of wounding responses in Aquilaria

    Genome-wide analysis of WRKY gene family in Cucumis sativus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as <it>Arabidopsis</it>.</p> <p>Results</p> <p>We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (<it>CsWRKY</it>) genes were classified into three groups (group 1-3). Analysis of expression profiles of <it>CsWRKY </it>genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible <it>CsWRKY </it>genes were correlated with those of their putative <it>Arabidopsis WRKY (AtWRKY) </it>orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 <it>AtWRKY </it>genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among <it>CsWRKY </it>group 3 genes, which may have led to the expressional divergence of group 3 orthologs.</p> <p>Conclusions</p> <p>Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.</p
    corecore