43 research outputs found
Interactions between deep-water gravity flows and active salt tectonics
Behavior of sediment gravity flows can be influenced by seafloor topography associated with salt structures; this can modify the depositional architecture of deep-water sedimentary systems. Typically, salt-influenced deep-water successions are poorly imaged in seismic reflection data, and exhumed systems are rare, hence the detailed sedimentology and stratigraphic architecture of these systems remains poorly understood.
The exhumed Triassic (Keuper) Bakio and Guernica salt bodies in the Basque–Cantabrian Basin, Spain, were active during deep-water sedimentation. The salt diapirs grew reactively, then passively, during the Aptian–Albian, and are flanked by deep-water carbonate (Aptian–earliest Albian Urgonian Group) and siliciclastic (middle Albian–Cenomanian Black Flysch Group) successions. The study compares the depositional systems in two salt-influenced minibasins, confined (Sollube basin) and partially confined (Jata basin) by actively growing salt diapirs, comparable to salt-influenced minibasins in the subsurface. The presence of a well-exposed halokinetic sequence, with progressive rotation of bedding, beds that pinch out towards topography, soft-sediment deformation, variable paleocurrents, and intercalated debrites indicate that salt grew during deposition. Overall, the Black Flysch Group coarsens and thickens upwards in response to regional axial progradation, which is modulated by laterally derived debrites from halokinetic slopes. The variation in type and number of debrites in the Sollube and Jata basins indicates that the basins had different tectonostratigraphic histories despite their proximity. In the Sollube basin, the routing systems were confined between the two salt structures, eventually depositing amalgamated sandstones in the basin axis. Different facies and architectures are observed in the Jata basin due to partial confinement.
Exposed minibasins are individualized, and facies vary both spatially and temporally in agreement with observations from subsurface salt-influenced basins. Salt-related, active topography and the degree of confinement are shown to be important modifiers of depositional systems, resulting in facies variability, remobilization of deposits, and channelization of flows. The findings are directly applicable to the exploration and development of subsurface energy reservoirs in salt basins globally, enabling better prediction of depositional architecture in areas where seismic imaging is challenging
Going beyond (electronic) patient-reported outcomes: harnessing the benefits of smart technology and ecological momentary assessment in cancer survivorship research
Rapid developments in digital mobile and sensor technology have facilitated the active and passive collection of detailed, personalized data in increasingly affordable ways. Researchers may be familiar with the daily diary, portable computers, or the pedometer for the collection of patientreported outcomes (PRO) in cancer survivorship research. Such methods, termed ecological momentary assessment (EMA), have evolved with technological advances, e.g., collecting data or providing interventions (ecological momentary intervention, EMI) via apps or devices such as smartphones. These smart technology-adapted sEMA/ sEMI methods are more widely used in affective disorders or addictive behavior research but are currently still under-utilized in cancer survivorship research. A recent scoping review on the use of active EMA among cancer survivors identified twelve articles published between 1993 and 2018. Most of the included studies in that review used portable computers. This commentary will discuss the utility of sEMA/sEMI in cancer survivorship research and call for action to advance this area of science
Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality
Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae in a relatively short time (12-24hrs), significantly quicker than when larvae were exposed to conidia. This study shows that selecting the appropriate form of inoculum is important for efficacious control of disease vectors such as Ae. aegypti
Changing environments during the Middle-Upper Palaeolithic transition in the eastern Cantabrian Region (Spain): direct evidence from stable isotope studies on ungulate bones
Environmental change has been proposed as a factor that contributed to the extinction of the Neanderthals in Europe during MIS3. Currently, the different local environmental conditions experienced at the time when Anatomically Modern Humans (AMH) met Neanderthals are not well known. In the Western Pyrenees, particularly, in the eastern end of the Cantabrian coast of the Iberian Peninsula, extensive evidence of Neanderthal and subsequent AMH activity exists, making it an ideal area in which to explore the palaeoenvironments experienced and resources exploited by both human species during the Middle to Upper Palaeolithic transition. Red deer and horse were analysed using bone collagen stable isotope analysis to reconstruct environmental conditions across the transition. A shift in the ecological niche of horses after the Mousterian demonstrates a change in environment, towards more open vegetation, linked to wider climatic change. In the Mousterian, Aurignacian and Gravettian, high inter-individual nitrogen ranges were observed in both herbivores. This could indicate that these individuals were procured from areas isotopically different in nitrogen. Differences in sulphur values between sites suggest some variability in the hunting locations exploited, reflecting the human use of different parts of the landscape. An alternative and complementary explanation proposed is that there were climatic fluctuations within the time of formation of these archaeological levels, as observed in pollen, marine and ice cores.This research was funded by the European Commission through a Marie Curie Career Integration Grant (FP7-
PEOPLE-2012-CIG-322112), by the Spanish Ministry of Economy and Competitiveness (HAR2012-33956 and
Ramon y Cajal-2011-00695), the University of Cantabria and Campus International to ABMA. Radiocarbon
dating at ORAU was funded by MINECO-HAR2012-33956 project. J.J was supported initially by the FP7-
PEOPLE-2012-CIG-322112 and later by a Marie Curie Individual Fellowship (H2020-MSCA-IF-2014-656122).
Laboratory work, associated research expenses and isotopic analysis were kindly funded by the Max Planck
Society to M.R
Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection
Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact
Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection
Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact
Mass transport deposits in deep-water minibasins: Outcropping examples from the minibasins adjacent to the Bakio salt wall (Basque Country, Northern Spain)
International audienceRecent subsurface studies show that mass-transport deposits (MTDs) in salt-controlled basins may correspond to local or regional bodies induced by either regional tectonics, or diapir growth. These MTDs are commonly considered as muddy bodies but they may alternatively incorporate a high amount of clasts and reworked beds with good reservoir properties and thus they are often challenging deposits in oil and gas exploration. The minibasins adjacent to the Bakio salt diapir, in northern Spain, provide a unique opportunity to study up to seven outcropping MTDs comparable in size to subsurface examples. Detailed structural analysis was used to reconstruct the transport direction for each MTD and to infer their source locations. In addition, facies analyses enabled the estimation of their percent of mud or matrix, allowing for a discussion on their potential reservoir and seal properties. At least six of the studied MTDs correspond to locally-derived MTDs sourced from the Bakio diapir or from the footwall of the adjacent sub-salt extensional faults. The primary trigger for these MTDs may be halokinesis, probably with contributions from other secondary processes, such as carbonate platform aggradation, high sedimentation rates and regional extension. Transport directions together with palaeoflow analysis suggests that regionally-derived turbidites flowed along the minibasin axis, while MTDs were transported laterally from the minibasin margins at high angle with the turbidity flows. We identified three types of MTDs: muddy siliciclastic-dominated MTDs, sandstone clast-rich siliciclastic-dominated MTDs and carbonate-dominated MTDs. Using this classification and subsurface analogs we propose a model of locally-derived MTDs according to the nature of the source area and the sedimentary facies reworked along the MTD downslope trajectories. This model suggests that reservoir and seal properties could be suggested for MTDs in subsurface studies by characterizing the nature of the diapir roof and the facies at the seafloor found along the MTDs trajectories. © 2021 Elsevier Lt
Halokinetic sequences in carbonate systems : an example from the Middle Albian Bakio Breccias Formation (Basque Country, Spain)
In diapir flanks, unconformity-bounded sedimentary packages associated with gravity-driven deposits, controlled by the ratio between the rates of sediment accumulation and diapir growth can be interpreted in the context of halokinetic sequences. The Bakio Breccias Formation (Basque Country, Spain) corresponds to redeposited carbonate deposit that developed in response to the Bakio diapir growth during the Middle Albian. These deposits provide on of the rare documented example of carbonate-dominated halokinetic sequences. The Bakio Breccias Formation consists of an alternation of clast- and matrix-supported breccias, calcirudite, calcarenite and marl, deposited along the flanks of the diapir. The description and the analysis of the Bakio Breccias Formation lead to a new model for carbonate-dominated halokinetic sequences. These sequences differ from their siliciclastic counterpart because sediment accumulation rate is controlled by carbonate platform growth on the topographic relief top of the diapirs, while sediments are preferentially deposited in the mini basins adjacent of the diapirs, in siliciclastic settings. During transgressive system tract, carbonate platform are able to keep up with the sea level rise and to aggrade on top of the diapirs, forming thick and resistant roof, which is assumed to limit the diapir growth and thus to favour the development of halokinetic sequences with low angle unconformities (wedge halokinetic sequences). During late highstand system tract deposition (and lowstand system tract if present), platform progradation results in high sediment accumulation in the adjacent depocenters, loading the autochthonous salt layer and promote diapir growth and creation of topographic relief. In addition, if the diapir roof reaches emersion, karstification of the carbonate platform top may also favour roof destruction and diapir growth. Depending on the thickness of the roof developed previously and the amplitude of the sea level fall, the halokinetic sequences with the emersion and the karstification of the carbonate platform may display high angle unconformities (hook halokinetic sequences). Furthermore, gravity-driven deposits are assumed to be more common in carbonate-dominated halokinetic sequences, compared to their siliciclastic counterparts, since carbonate platform aggradation creates steep slopes on the diapir margins, leading to the partial collapse of the margin, even when limited diapir growth occurs. The carbonate-dominated halokinetic sequence model proposed here is an important tool for the prediction of potential reservoir distribution, seal and hydrocarbon migration in flanks of salt diapirs where carbonate platform developed
Sedimentary and structural record of the Albian growth of the Bakio salt diapir (the Basque Country, northern Spain)
However salt has a viscous rheology, overburden rocks adjacent to salt diapirs have a brittle rheology. Evidence of deformation within the overburden has been described from diapirs worldwide. Gravity-driven deposits are also present along the flanks of several diapirs. The well-known example from the La Popa Basin in northern Mexico shows that such deposits may be organized into halokinetic sequences. This leads to several questions: (i) How does diapir growth contribute to overburden deformation? (ii) Are halokinetic sequence models valid for other areas beyond the La Popa Basin. The Bakio diapir and its well-exposed overburden in Basque Country, Spain provides key elements to address these questions. The Bakio diapir consists of Triassic red clays and gypsum and is flanked by synkinematic middle to upper Albian units that thin towards the diapir. The elongate diapir parallels the Gaztelugatxe normal fault to the NE: both strike NE-SW and probably formed together during the middle Albian, as synkinematic units onlap the fault scarp. The diapir is interpreted as a reactive diapir in response to middle Albian motion on the Gaztelugatxe fault. The rate of salt rise is estimated to be about 500mMyr(-1) during this passive stage. During Late Albian, the diapir evolved passively as the Gaztelugatxe fault became inactive. Synkinematic units thinning towards the diapir, major unconformities, slumps and other gravity-driven deposits demonstrate that most deformation related to diapir growth occurred at the sea floor. Halokinetic sequences composed of alternating breccias and fine-grained turbidites recorded cyclic episodes of diapir flank destabilization. This work provides insights into drape fold and halokinetic sequence models and offers a new simple method for estimating rates of diapir growth. This method may be useful for outcrop studies where biostratigraphical data are available and for other passive diapirs worldwide