496 research outputs found

    Nonlinear and hysteretic modelling of magnetorheological elastomer base isolator using adaptive neuro-fuzzy inference system

    Full text link
    Magnetorheological elastomer (MRE) base isolator is a semi-active control device which has currently obtained increasing attention in the field of vibration control of civil structures. However, the inherent nonlinear and hysteretic response of the device is regarded as a challenge aspect for using the smart device to realize the high performance. Therefore, an accurate and robust model is essential to make full use of these unique features for its engineering applications. In this paper, to solve this issue, adaptive neuro-fuzzy inference system (ANFIS) is utilized to characterize the dynamic behavior of the device. In this proposed model, the inputs are historical displacements and applied current of the device while the output is the shear force generated. To validate its forecast performance, the ANFIS model is also compared with some conventional models. Finally, the result verifies that ANFIS has the best perfection ability among existing MRE-based device models

    Co-Evolution of Stars and Gas: Using Analysis of Synthetic Observations to Investigate the Star-Gas Correlation in STARFORGE

    Full text link
    We explore the relationship between stellar surface density and gas surface density (the star-gas or S-G correlation) in a 20,000 M⊙_{\odot} simulation from the STAR FORmation in Gaseous Environments (STARFORGE) Project. We create synthetic observations based on the Spitzer and Herschel telescopes by modeling active galactic nuclei contamination, smoothing based on angular resolution, cropping the field-of-view, and removing close neighbors and low-mass sources. We extract star-gas properties such as the dense gas mass fraction, the Class II:I ratio, and the S-G correlation (ΣYSO/Σgas\Sigma_{\rm YSO}/\Sigma_{\rm gas}) from the simulation and compare them to observations of giant molecular clouds, young clusters, and star-forming regions, as well as to analytical models. We find that the simulation reproduces trends in the counts of young stellar objects and the median slope of the S-G correlation. This implies that the S-G correlation is not simply the result of observational biases but is in fact a real effect. However, other statistics, such as the Class II:I ratio and dense gas mass fraction, do not always match observed equivalents in nearby clouds. This motivates further observations covering the full simulation age range and more realistic modeling of cloud formation.Comment: 25 pages, 16 figures. To be published in The Astrophysical Journa

    Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE

    Get PDF
    Hydrological models and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been widely used to study the variations in terrestrial water storage (TWS) over large regions. However, both GRACE products and model results suffer from inherent uncertainties, calling for the need to make a combined use of GRACE and models to examine the variations in total TWS and their individual components, especially in relation to natural and human-induced changes in the terrestrial water cycle. In this study, we use the results from two state-of-the-art hydrological models and different GRACE spherical harmonic products to examine the variations in TWS and its individual components, and to attribute the changes to natural and human-induced factors over large global river basins. Analysis of the spatial patterns of the long-term trend in TWS from the two models and GRACE suggests that both models capture the GRACE-measured direction of change, but differ from GRACE as well as each other in terms of the magnitude over different regions. A detailed analysis of the seasonal cycle of TWS variations over 30 river basins shows notable differences not only between models and GRACE but also among different GRACE products and between the two models. Further, it is found that while one model performs well in highly-managed river basins, it fails to reproduce the GRACE-observed signal in snow-dominated regions, and vice versa. The isolation of natural and human-induced changes in TWS in some of the managed basins reveals a consistently declining TWS trend during 2002-2010, however; significant differences are again obvious both between GRACE and models and among different GRACE products and models. Results from the decomposition of the TWS signal into the general trend and seasonality indicate that both models do not adequately capture both the trend and seasonality in the managed or snow-dominated basins implying that the TWS variations from a single model cannot be reliably used for all global regions. It is also found that the uncertainties arising from climate forcing datasets can introduce significant additional uncertainties, making direct comparison of model results and GRACE products even more difficult. Our results highlight the need to further improve the representation of human land-water management and snow processes in large-scale models to enable a reliable use of models and GRACE to study the changes in freshwater systems in all global regions

    How resilient are waterways of the Asian Himalayas? Finding adaptive measures for future sustainability

    Get PDF
    OnlinePublThe high-mountain system, a storehouse of major waterways that supportimportant ecosystem services to about 1.5 billion people in the Himalaya, isfacing unprecedented challenges due to climate change during the 21st cen-tury. Intensified floods, accelerating glacial retreat, rapid permafrost degrada-tion, and prolonged droughts are altering the natural hydrological balancesand generating unpredictable spatial and temporal distributions of water avail-ability. Anthropogenic activities are adding further pressure onto Himalayanwaterways. The fundamental question of waterway management in this regionis therefore how this hydro-meteorological transformation, caused by climatechange and anthropogenic perturbations, can be tackled to find avenues forsustainability. This requires a framework that can diagnose threats at a rangeof spatial and temporal scales and provide recommendations for strong adap-tive measures for sustainable future waterways. This focus paper assesses thecurrent literature base to bring together our understanding of how recent cli-matic changes have threatened waterways in the Asian Himalayas, how societyhas been responding to rapidly changing waterway conditions, and what adap-tive options are available for the region. The study finds that Himalayan water-ways are crucial in protecting nature and society. The implementation ofintegrated waterways management measures, the rapid advancement of waterway infrastructure technologies, and the improved governance of water-ways are more critical than ever.Giri R. Kattel, Amelie Paszkowski, Yadu Pokhrel, Wenyan Wu, Dongfeng Li, Mukund P. Ra

    Multimodel assessments of human and climate impacts on mean annual streamflow in China

    Get PDF
    Human activities, as well as climate variability, have had increasing impacts on natural hydrological systems, particularly streamflow. However, quantitative assessments of these impacts are lacking on large scales. In this study, we use the simulations from six global hydrological models driven by three meteorological forcings to investigate direct human impact (DHI) and climate impact on streamflow in China. Results show that, in the sub-periods of 1971–1990 and 1991–2010, one-fifth to one-third of mean annual streamflow (MAF) was reduced due to DHI in northern basins, and much smaller (<4 %) MAF was reduced in southern basins. From 1971–1990 to 1991–2010, total MAF changes range from −13 % to 10 % across basins wherein the relative contributions of DHI change and climate variability show distinct spatial patterns. DHI change caused decreases in MAF in 70 % of river segments, but climate variability dominated the total MAF changes in 88 % of river segments of China. In most northern basins, climate variability results in changes of −9 % to 18 % in MAF, while DHI change results in decreases of 2 % to 8 % in MAF. In contrast with the climate variability that may increase or decrease streamflow, DHI change almost always contributes to decreases in MAF over time, with water withdrawals supposedly being the major impact on streamflow. This quantitative assessment can be a reference for attribution of streamflow changes at large scales, despite remaining uncertainty. We highlight the significant DHI in northern basins and the necessity to modulate DHI through improved water management towards a better adaptation to future climate change

    Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5)

    Get PDF
    A recent development in the representation of aerosols in climate models is the realization that some components of organic aerosol (OA), emitted from biomass and biofuel burning, can have a significant contribution to shortwave radiation absorption in the atmosphere. The absorbing fraction of OA is referred to as brown carbon (BrC). This study introduces one of the first implementations of BrC into the Community Atmosphere Model version 5 (CAM5), using a parameterization for BrC absorptivity described in Saleh et al. (2014). Nine-year experiments are run (2003–2011) with prescribed emissions and sea surface temperatures to analyze the effect of BrC in the atmosphere. Model validation is conducted via model comparison to single-scatter albedo and aerosol optical depth from the Aerosol Robotic Network (AERONET). This comparison reveals a model underestimation of single scattering albedo (SSA) in biomass burning regions for both default and BrC model runs, while a comparison between AERONET and the model absorption Ångström exponent shows a marked improvement with BrC implementation. Global annual average radiative effects are calculated due to aerosol–radiation interaction (REari; 0.13±0.01&thinsp;W m−2) and aerosol–cloud interaction (REaci; 0.01±0.04&thinsp;W m−2). REari is similar to other studies' estimations of BrC direct radiative effect, while REaci indicates a global reduction in low clouds due to the BrC semi-direct effect. The mechanisms for these physical changes are investigated and found to correspond with changes in global circulation patterns. Comparisons of BrC implementation approaches find that this implementation predicts a lower BrC REari in the Arctic regions than previous studies with CAM5. Implementation of BrC bleaching effect shows a significant reduction in REari (0.06±0.008&thinsp;W m−2). Also, variations in OA density can lead to differences in REari and REaci, indicating the importance of specifying this property when estimating the BrC radiative effects and when comparing similar studies.</p

    The effects of annual precipitation and mean air temperature on annual runoff in global forest regions

    Get PDF
    Abstract Changing trends in runoff and water balance under a warming atmosphere are a major subject of interest in recent climatic and hydrological research. Forest basins represent the most complex systems including critical hydrological processes. In this study, we investigate the relationship between annual total runoff (Q), precipitation (P), and mean temperature (T) using observed data collected from 829 (forest) site years around the world. It is shown that the strong linear relationship between annual P and Q is a function of mean T. By empirically perturbing observed annual Q and P with T, a set of ΔQ-zero lines are derived for different mean T. To evaluate the extent to which the future changes in annual P and T alter Q, the future projections of ΔP and ΔT under a warming scenario (A1B) from five coupled AOGCMs (Atmosphere-Ocean General Circulation Models) are compared with the empirical ΔQ-zero lines derived in this study. It is found that five AOGCMs show different distributions with respect to the ΔQ-zero lines, which can be attributed to the contrasting dominant sensitivities of various influencing factors to water balance partitioning among models. The knowledge gained in this empirical study is helpful to predict water resources changes under changing climate as well as to interpret hydrologic simulations in AOGCM future projections. Climatic Chang

    Investigation into the multiple recent sinkholes in Pokhara, Nepal

    Get PDF
    Since November 2013, numerous sinkholes have been forming in the Armala area of Pokhara Valley, Central Nepal, posing serious threat to local residents. In order to provide countermeasures for reducing sinkhole risk, detailed investigations into the cause and the formation mechanism of the sinkholes are crucial. Preliminary surveys were conducted in June 2014 and November 2014. Comparison of photos, taken in the two surveys, clearly indicates not only the formation of new sinkholes, but also the re-activation of filled sinkholes. By means of dynamic cone penetration tests and surface wave investigations, qualitative characterization of the soil profile was attained, and shallow weak soil layers which are believed to be the location for future sinkholes could be identified. On the basis of the preliminary field investigation, possible sinkhole formation mechanisms are considered. A risk of sinkhole does not seem to disappear as white turbid water continuously springs. It indicates that the internal erosion of white clayey silt layer is still in progress. In August 2015, a boring was carried out beside one of the largest sinkholes. The overall structure of ground layers was first revealed and a 2.5m high cavity at 7.5-10m deep from the ground surface was found within a thick white clayey silt layer. Further ground investigations including surface wave exploration were conducted in December 2015 and the results are reported
    • …
    corecore