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Abstract  18 

Hydrological models and the data derived from the Gravity Recovery and Climate Experiment 19 

(GRACE) satellite mission have been widely used to study the variations in terrestrial water 20 

storage (TWS) over large regions. However, both GRACE products and model results suffer 21 

from inherent uncertainties, calling for the need to make a combined use of GRACE and models 22 

to examine the variations in total TWS and their individual components, especially in relation to 23 

natural and human-induced changes in the terrestrial water cycle. In this study, we use the results 24 

from two state-of-the-art hydrological models and different GRACE spherical harmonic products 25 

to examine the variations in TWS and its individual components, and to attribute the changes to 26 

natural and human-induced factors over global river basins. Analysis of the spatial patterns of the 27 

long-term trend in TWS from the two models and GRACE suggests that both models capture the 28 

GRACE-measured direction of change, but differ from GRACE as well as each other in terms of 29 

the magnitude over different regions. A detailed analysis of the seasonal cycle of TWS variations 30 

over  30 river basins shows notable differences not only between models and GRACE but also 31 

among different GRACE products and between the two models. Further, it is found that while 32 

one model performs well in highly-managed river basins, it fails to reproduce the GRACE-33 

observed signal in snow-dominated regions, and vice versa. The isolation of natural and human-34 

induced changes in TWS in some of the managed basins reveals a consistently declining TWS 35 

trend during 2002-2010, however; significant differences are again obvious both between 36 

GRACE and models and among different GRACE products and models. Results from the 37 

decomposition of the TWS signal into the general trend and seasonality indicate that both models 38 

do not adequately capture both the trend and seasonality in the managed or snow-dominated 39 

basins implying that the TWS variations from a single model cannot be reliably used for all 40 

global regions. It is also found that the uncertainties arising from climate forcing datasets can 41 

introduce significant additional uncertainties, making direct comparison of model results and 42 

GRACE products even more difficult. Our results highlight the need to further improve the 43 

representation of human land-water management and snow processes in large-scale models to 44 

enable a reliable use of models and GRACE to study the changes in freshwater systems in all 45 

global regions.  46 

  47 
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1. Introduction 48 

The question of how freshwater systems are changing under the dual influence of climate 49 

variability and increasing human water exploitation has been a topic of great concern and debate 50 

in the face of growing water scarcity around the world (Alley et al., 2002; Famiglietti, 2014; Fan, 51 

2015; Gleeson et al., 2012). Ground-based monitoring of surface water and groundwater (GW) 52 

systems suggests profound changes in surface water flows and GW storages globally due to 53 

accelerating human alteration of land and water systems (Giordano, 2009; Scanlon et al., 2012a) 54 

which can be both direct, e.g., flow regulation and groundwater pumping and indirect, e.g., 55 

changes in climate forcing, CO2 concentrations and impacts on photosynthetic activities 56 

(Trancoso et al., 2017).  However, the lack of in-situ observations worldwide limits our 57 

understanding of the dynamic relationship between natural climate variability and direct and 58 

indirect human impacts (HI)  on freshwater systems (Alley et al., 2002; Döll et al., 2016; Taylor 59 

et al., 2013). Large-scale hydrological models play an irreplaceable role in filling this data gap 60 

and provide an improved understanding of the changes in the water cycle, which is crucial for 61 

the accurate assessment and realistic prediction of water availability and use. In recent years, 62 

satellite-based observations of water flows and storages have substantially advanced our ability 63 

to better monitor the changing water systems at the global scale. In particular, the combined use 64 

of the satellite data and hydrological models has revolutionized the way we study global 65 

freshwater systems (Dijk and Renzullo, 2011; Famiglietti et al., 2015).  66 

Large-scale hydrological models have been widely used to study global freshwater systems and 67 

human water use (Nazemi and Wheater, 2015; Pokhrel et al., 2016). These models can be 68 

classified into two general types: (i) land surface models (LSMs) and (ii) global hydrological 69 

models (GHMs) (Haddeland et al., 2011). LSMs, such as the MATSIRO (Takata et al., 2003) 70 

and CLM (Lawrence et al., 2011), are designed to simulate the land hydrology within the general 71 

circulation models (GCMs) and Earth system models (ESMs), but GHMs, such as the WaterGAP 72 

(Alcamo et al., 2003; Döll et al., 2003) and PCR-GLOBWB  (van Beek et al., 2011; Wada et al., 73 

2010), have been traditionally developed as stand-alone models for offline water resource 74 

assessment. While LSMs simulate various hydrological processes on a physical basis and solve 75 

both surface water and energy balances at the land surface, GHMs simulate these processes using 76 

relatively simple and conceptual approaches even though they are more comprehensive in 77 

simulating human land-water management practices (Pokhrel et al., 2016). As such, LSMs and 78 
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GHMs have certain limitations in simulating the natural or human-induced changes in various 79 

branches of the water cycle. In particular, despite noteworthy progress that has been made in 80 

model improvements over the years (Overgaard et al., 2006; Pitman, 2003; Sellers et al., 1997), 81 

water table dynamics and GW pumping still remain largely ignored or poorly simulated (Nazemi 82 

and Wheater, 2015; Pokhrel et al., 2016), making the models incapable of accurately capturing 83 

subsurface water flows and storages in general, and the human-induced GW storage depletion in 84 

particular. While the hydrological fluxes such as river discharge can be simulated with relatively 85 

high accuracy either by calibrating the model with observations (Döll et al., 2003) and/or by 86 

employing lumped routing schemes to explicitly simulate shallow GW flows (Kim et al., 2009), 87 

these approaches do not guarantee the correct simulation of soil moisture and GW storage. 88 

Moreover, the uncertainties arising from these deficiencies in model parameterizations can be 89 

further amplified by the uncertainties in meteorological forcing datasets used to drive these 90 

models (Decharme and Douville, 2006).  91 

Advances in satellite observations have enabled us to address some of the challenges in using 92 

hydrological models for large-scale hydrological studies (Pail et al., 2015). For example, the 93 

assimilation of terrestrial water storage (TWS) derived from the Gravity Recovery and Climate 94 

Experiment (GRACE) satellite mission into LSMs has been used to improve global simulation of 95 

TWS and its components by model calibration and assimilation techniques (Chen et al., 2017; 96 

Eicker et al., 2014; Girotto et al., 2016; Houborg et al., 2012; Li et al., 2012; Li and Rodell, 97 

2015; Zaitchik et al., 2008) and to quantify the changes in certain variables that are not explicitly 98 

simulated by the models (e.g., GW storage) (Castellazzi et al., 2016; Famiglietti et al., 2011; 99 

Feng et al., 2013; Jin and Feng, 2013; Long et al., 2016; Nanteza et al., 2016; Rodell et al., 2009; 100 

Scanlon et al., 2012b). GRACE data has also been extensively used to benchmark the accuracy 101 

of hydrological model simulations (Alkama et al., 2010; Decharme et al., 2010; Döll et al., 2014; 102 

Eicker et al., 2016; Freedman et al., 2014; Grippa et al., 2011; Landerer et al., 2010, 2013; 103 

Rosenberg et al., 2013; Swenson and Lawrence, 2015; Xie et al., 2012; Yang et al., 2011); 104 

conversely, LSMs have also proved useful to evaluate the performance of different GRACE 105 

products and processing methods (Klees et al., 2008; Werth et al., 2009) and used as a priori 106 

information to restore signal attenuation and leakage errors arising from the low spatial 107 

resolution of GRACE (Landerer and Swenson, 2012; Long et al., 2015a, 2015b).  108 
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The GRACE and hydrological models complement each other to better constrain the different 109 

components on the water cycle; however, GRACE products are affected by various limitations 110 

and uncertainties. First, it provides a large-scale estimate of vertically integrated water storage 111 

variations, limiting safe interpretation to relatively large regions (>200,000 km2) (Longuevergne 112 

et al., 2010). Second, GRACE products are affected by latitude-dependent uncertainties with 113 

higher uncertainties in mid and low latitudes compared to the poles (Wahr et al., 2006). 114 

Moreover, varying uncertainties can be found even among different GRACE solutions i.e., 115 

spherical harmonic (SH) products and mascons (Long et al., 2017; Scanlon et al., 2016; Watkins 116 

et al., 2015) which vary across different global regions.  117 

GRACE measures the vertically integrated TWS variations caused by both natural and 118 

anthropogenic drivers. Therefore, hydrological models or other supplementary data are required 119 

to disintegrate the total TWS into separate components and to partition it into the natural and 120 

human-induced changes. For example, Human-induced TWS variations are estimated by 121 

computing the difference between GRACE that includes the human factors and hydrological 122 

models that simulate only the natural part of the water cycle (Huang et al., 2015; Pan et al., 123 

2016). Some other studies have used GRACE-based TWS variations and observed or simulated 124 

surface water storage variations to derive GW storage change in depleted aquifer systems where 125 

in some cases, the GRACE-detected TWS signature is mostly due to human-induced GW storage 126 

change (Famiglietti et al., 2011; Rodell et al., 2009; Scanlon et al., 2012b) and in some cases it is 127 

due to specific climatic events such as climate variability or droughts (Russo and Lall, 2017; 128 

Scanlon et al., 2015). Although these approaches are useful for extracting human-induced TWS 129 

variations from models that do not account for human activities, they can involve significant 130 

uncertainties arising from the errors and uncertainties in two independent products (GRACE and 131 

models). The recent advancements in representing human activities in models (e.g., Pokhrel et 132 

al., 2016) provide the opportunity to directly isolate the human-induced TWS variations from 133 

models (e.g., Pokhrel et al., 2017) and compare the results with GRACE-based approaches.  134 

Given the above background, we use multiple GRACE SH products and results from two 135 

hydrological models (one LSM and one GHM) to examine the spatio-temporal patterns of TWS 136 

variations and the uncertainties arising from the use of different GRACE products and 137 

hydrological models. To limit the propagation of some GRACE errors, we use the strategy to 138 
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filter model output as GRACE before performing a comparison. Both models explicitly simulate 139 

the human-induced changes in TWS, including the changes in GW storage due to pumping, 140 

making the results directly comparable with GRACE. A detailed analysis is presented for the 141 

selected river basins located in different geographic regions and having different extent of human 142 

alterations in terms of flow regulation and GW use. Results from the simulation with natural 143 

settings (without considering human factors) are then used in conjunction with GRACE data to 144 

isolate the human-induced TWS variations from the total TWS change measured by GRACE. 145 

Our specific objectives are to: (1) examine the global spatial patterns in TWS variations over 146 

different river basins, especially by quantifying the contribution of different components to the 147 

total TWS variations; (2) carry out a temporal comparison among multiple GRACE SH products 148 

and two models and attribute the TWS variations to climate and human-induced factors in the 149 

basins where human land-water management has largely altered the terrestrial water balance; and 150 

(3) quantify the uncertainties in simulated TWS caused by the use of different sets of 151 

meteorological forcing data.  These objectives provide the structural sub-headings used in the 152 

Methods, Results, and Discussion sections. 153 

2. Models and Data  154 

2.1 Models 155 

We use two state-of-the-art hydrological models, namely the HiGW-MAT, a LSM (Pokhrel et 156 

al., 2015) and the PCR-GLOBWB, a GHM (Wada et al., 2014) to simulate the global terrestrial 157 

water fluxes and storages (excluding Antarctica and Greenland). Both models simulate the 158 

natural and human-induced changes in flows and storage of water, explicitly taking into account 159 

GW abstractions and the resulting changes in subsurface storage, which is crucial to realistically 160 

simulate the variations of TWS in regions with intensive GW mining. However, the two models 161 

use different GW representations; while PCR-GLOBWB simulates the GW storage as a linear 162 

reservoir model without explicitly representing water table dynamics, HiGW-MAT uses a more 163 

sophisticated GW scheme that explicitly simulates the water table dynamics. A detailed 164 

description of both models can be found in our earlier works (Pokhrel et al., 2015; Wada et al., 165 

2014) but for completeness, we provide a brief summary of the models below.  166 

The HiGW-MAT model is based on the Minimal Advanced Treatment of Surface Interactions 167 

and Runoff (MATSIRO) (Takata et al., 2003) LSM. In MATSIRO, effects of vegetation on the 168 
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surface energy balance are calculated on the basis of the multi-layer canopy model of Watanabe 169 

(1994) and the photosynthesis-stomatal conductance model of Collatz et al. (1991). The vertical 170 

movement of soil moisture is estimated by numerically solving the Richards equation (Richards, 171 

1931) for the soil layers in the unsaturated zone. Surface and subsurface runoff parameterizations 172 

are based on the simplified TOPMODEL (Beven and Kirkby, 1979; Stieglitz et al., 1997). In our 173 

recent studies, we enhanced MATSIRO by first representing HI schemes such as reservoir 174 

operation and irrigation (Pokhrel et al., 2012a, 2012b) and then GW pumping (Pokhrel et al., 175 

2015), resulting in the latest development called the HiGW-MAT.  176 

In HiGW-MAT, irrigation is simulated by using a soil moisture deficit based scheme described 177 

in Pokhrel et al. (2012a). Gridded irrigated areas are based on the Pokhrel et al. (2012a). The 178 

pumping scheme described in Pokhrel et al. (2015) explicitly simulates the amount of water 179 

withdrawn from aquifer and the associated changes in GW storage. The water table dynamics is 180 

simulated by using the scheme of Koirala et al. (2014). All soil and vegetation parameters and 181 

land cover data are prescribed based on the Global Soil Wetness Project 2 (GSWP2) (Dirmeyer 182 

et al., 2006). Subgrid variability of vegetation is represented by partitioning each grid cell into 183 

two tiles: natural vegetation and irrigated cropland. The crop growth module, based on the crop 184 

vegetation formulations and parameters of the Soil and Water Integrated Model (SWIM) 185 

(Krysanova et al., 1998), estimates the growing period necessary to obtain mature and optimal 186 

total plant biomass for 18 different crop types. The leaf area index (LAI) is resolved according to 187 

Hirabayashi et al. (2005). Surface runoff is routed through the river network using the Total 188 

Runoff Integrating Pathways (TRIP) (Oki and Sud, 1998). The reservoir operation is based on 189 

Hanasaki et al. (2006). Data for large and medium-sized reservoirs are same as in Pokhrel et al. 190 

(2012a), which account for the majority of dams having a height of 15m or more.  191 

The original MATSIRO and the HI schemes in HiGW-MAT have been extensively validated 192 

using observed river discharge, TWS, irrigation water withdrawals, GW pumping, and water 193 

table depth (Koirala et al., 2014; Pokhrel et al., 2012a, 2012b, 2015; Zhao et al., 2017). The 194 

results of evapotranspiration (ET) have not been validated due to the lack of reliable global ET 195 

products, but as in any typical global model, the underlying assumption is that since the models 196 

are forced by observed meteorological data and they perform reasonably well in reproducing 197 

river flow, ET simulations are also reasonable. 198 
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PCR-GLOBWB is an offline GHM that simulates the interaction of surface water and subsurface 199 

water through the atmosphere, land surface, two vertically stacked soil layers and an explicit 200 

underlying GW reservoir that is represented as a linear reservoir model (Kraijenhoff Van De 201 

Leur, 1958). PCR-GLOBWB explicitly simulates the water demands for agriculture, industry 202 

and households, and associated use from different water sources. The irrigation water 203 

requirement including the losses is calculated for paddy and nonpaddy crops based on the 204 

MIRCA2000 dataset (Portmann et al., 2010). The irrigation scheme is dynamically linked to the 205 

surface and subsurface hydrology schemes to provide a more realistic soil moisture content and 206 

ET over irrigated croplands (Wada et al., 2014). Other water demands including livestock, 207 

industry and domestic are calculated based on various available socio-economic data and country 208 

statistics including livestock densities, GDP, electricity production, energy consumption, and 209 

population (Wada et al., 2014).  210 

The vegetation and land cover are parameterized according to the Global Land Cover 211 

Characteristics Data Base version 2.0 (GLCC 2.0; https://lta.cr.usgs.gov/glcc/globdoc2_0#avhrr) 212 

and the Land Surface Parameter dataset (LSP2) (Hagemann, 2002). Soil properties are obtained 213 

from the vector-based FAO Digital Soil Map of the World (DSMW) (FAO, 2003) and the 214 

ISRIC-WISE global dataset of derived soil properties (Batjes, 2005). Using Simulated 215 

Topological Network (STN30) (Vörösmarty et al., 2000), surface and subsurface runoff are 216 

routed along the river network. The Global Reservoir and Dam database (GRanD) (Lehner et al., 217 

2011) is used to locate the reservoirs on the river network based on the construction year. 218 

Reservoir regulation and release is simulated based on Hanasaki et al. (2006) and van Beek et al. 219 

(2011) to satisfy downstream water demands (Wada et al., 2010, 2014). The PCR-GLOBWB 220 

model is also validated with the observations of river discharge and runoff, TWS, irrigation 221 

water requirement, and GW withdrawal (van Beek et al., 2011; Wada et al., 2014). 222 

2.2 Climate Forcing 223 

We use forcing data from multiple sources. HiGW-MAT is driven by three forcing datasets: (1) 224 

the WFDEI (WATCH Forcing Data methodology applied to ERA-Interim reanalysis data) 225 

(Weedon et al., 2014), (2)  the forcing data from Princeton University (Sheffield et al., 2006), 226 

and (3) the JRA-25 atmospheric reanalysis data provided by Japanese Meteorological Agency 227 

(JMA) Climate Data Assimilation System (JCDAS) (Kim et al., 2009; Onogi et al., 2007). The 228 
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results from the third forcing data, which are validated in our previous studies, are used for the 229 

analysis of TWS, and the other two datasets are used to examine the uncertainty arising from the 230 

climate forcing data (see Section 3.3). PCR-GLOBWB is forced only by WFDEI data and is not 231 

considered for uncertainty analysis.  232 

2.3 GRACE Data  233 

The GRACE data along with model results are used to analyze the TWS variations. We use 234 

different level-3 SH-based GRACE products of equivalent water height (EWH) from three 235 

processing centers, namely: (i) the Center for Space Research (CSR) at University of Texas at 236 

Austin, (ii) Jet Propulsion Laboratory (JPL) at California Institute of Technology, and (iii) the 237 

German Research Center for Geoscience (GFZ) (available for download from JPL website; 238 

http://grace.jpl.nasa.gov/data/get-data/) for model evaluation and to characterize the uncertainty 239 

within the three GRACE products. In general, while the three official products (CSR, JPL, and 240 

GFZ) underestimate GRACE uncertainties (Sakumura et al., 2014), they provide a fair estimate 241 

to evaluate hydrological models. The GRACE satellite level 2 data processing delivers the 242 

dimensionless Stokes’ coefficients (𝐶𝐶𝑙𝑙𝑙𝑙 and 𝑆𝑆𝑙𝑙𝑙𝑙) complete to degree and order 96 (𝑙𝑙 = 𝑚𝑚 = 96 243 

). Corrections and adjustments are needed to reduce noises and isolate the TWS changes from 244 

other signals visible in GRACE. The GRACE data from aforementioned sources already carry 245 

corrections and filtering including atmospheric mass changes removal, glacial isostatic 246 

adjustment (GIA), truncation of SH coefficients at degree 60, and application of destriping filter 247 

alongside with a 300-km Gaussian smoother.  248 

It is important to consider observational errors when using GRACE data to evaluate models. The 249 

GRACE error budget can be separated into three types (Longuevergne et al., 2010): (1) errors 250 

associated with fundamental GRACE measurements satellite to satellite range rate (~5 mm 251 

EWH), (2) errors in atmospheric and oceanic corrections (~10 to 20 mm EWH) and (3) bias and 252 

leakage correction errors which can be the largest depending on basin area and context (~30 mm 253 

EWH for a 200,000 km² basin). In this work, rescaling factors are not used and the model results 254 

are filtered as GRACE to compare at an equivalent resolution and avoid type (3) errors. This 255 

method has been highlighted as a robust approach for model evaluation (Güntner, 2008; Xie et 256 

al., 2012).  257 

3. Methods 258 

Deleted: solutions 
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3.1. Spatial Patterns in TWS Variations and Contribution of Different Components  260 

We use the results from the fully coupled versions of both models (i.e., by activating all human 261 

impacts schemes) to evaluate the model performance in capturing the spatial variability in TWS 262 

rates measured by GRACE. For consistent comparison with GRACE data, the spatial map of 263 

simulated TWS rates from both models is transformed into SH domain, truncated at degree and 264 

order 60, and smoothed by the 300-km Gaussian filter, following Wahr et al. (1998). The spatial 265 

filtering process reduces the errors and noises together with the true signals. Different 266 

approaches (e,g., scaling factor approach and the additive correction approach) have been 267 

proposed to restore the true signal losses (Landerer and Swenson, 2012; Long et al., 2015a, 268 

2015b). Using the same filtering processes for model outputs, as used for GRACE products, 269 

offsets the necessity for reconstructing the attenuated signals when directly comparing the 270 

GRACE and simulated TWS (Landerer and Swenson, 2012).  271 

Additionally, understanding how different storage compartments (i.e., snow and ice, soil water, 272 

river water, and GW) contribute to the variations of total TWS is crucial to investigate how the 273 

changes in these individual compartments can potentially affect the availability and utilization of 274 

water resources. Isolation of the individual components also provides key insights on the 275 

interactions and feedback among different components under changing hydrologic regime. Here, 276 

we use a dimensionless metric called the component contribution ratio (CCR) proposed by Kim 277 

et al. (2009) to determine the role of different TWS components in modulating the total TWS 278 

variations in river basins from different climate regions. The ratio is calculated as:  279 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀
𝑇𝑇𝑇𝑇

                                   (1) 280 

where MAD is the mean absolute deviation of a TWS component (1
𝑁𝑁
∑ |𝑆𝑆𝑡𝑡 − 𝑆𝑆̅|,𝑁𝑁
𝑡𝑡 𝑆𝑆𝑡𝑡 is the value 281 

of component 𝑆𝑆 at time 𝑡𝑡 and 𝑁𝑁 is the number of months), TV is the total variability and is 282 

calculated as summation of all components MADs (∑ 𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖=𝑆𝑆 ). The CCR values are 283 

calculated by using HiGW-MAT model results. 284 

3.2. Temporal Variability of TWS in Global Basins: Human-induced TWS Change 285 

We make an integrated use of GRACE data and models to examine the temporal variability of 286 

TWS over the selected global river basins, and isolate the human-induced TWS change. To 287 

estimate basin-scale water storage, a simple basin function (which has the value 1 for inside the 288 

Deleted: have been 
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basin and 0 outside) is used. The function is then multiplied by different model and GRACE 290 

signals to form the basin scale water storage. Since the data are in 1 degree resolution with 291 

varying grid cell area, an area-weighted arithmetic mean is finally calculated as: 292 

𝐻𝐻(𝑥𝑥, 𝑡𝑡) = ∑ 𝑆𝑆𝑖𝑖(𝑥𝑥,𝑡𝑡)𝑛𝑛
𝑖𝑖=1

𝐴𝐴
,   𝑆𝑆𝑖𝑖(𝑥𝑥) = �1 × 𝑠𝑠 × 𝑎𝑎𝑖𝑖                𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

0                         𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
                                    (2) 293 

where 𝑠𝑠 is the LSM or GRACE estimate, 𝑎𝑎𝑖𝑖 is the cell area, 𝑆𝑆𝑖𝑖 is the weighted estimate for each 294 

cell inside the basin, 𝑛𝑛 is the number of cells in a basin, 𝐴𝐴 is the total area of the basin, and 295 

𝐻𝐻(𝑥𝑥, 𝑡𝑡) represents the estimate of water storage for basin at time 𝑡𝑡. 296 

We quantify the human-induced TWS change using GRACE and hydrological models in some 297 

of the basins affected by human activities. First, we estimate the long-term linear trend in TWS 298 

from GRACE observations, PCR-GLOBWB, and HiGW-MAT (simulations with HI). Then, we 299 

estimate the similar trend using the model results from the simulation with natural setting in 300 

which all HI schemes are deactivated. We then calculate the difference between the two trends as 301 

an estimate of the direct human-induced changes in TWS. To estimate the variations in monthly 302 

TWS from model results, we use two different approaches. First, for simulations with HI, we 303 

directly integrate the individual TWS components (i.e., snow water, canopy water, river water, 304 

soil moisture, and groundwater). Due to explicit representations of human activities in both 305 

HiGW-MAT and PCR-GLOBWB, all TWS components are explicitly simulated, also taking into 306 

account the impacts of human activities. In this approach, the vertically integrated TWS is 307 

expressed as: 308 

𝑇𝑇𝑊𝑊𝑊𝑊 =  𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆 +  𝐺𝐺𝐺𝐺 +  𝐶𝐶𝐶𝐶                               (3) 309 

where, 𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆, 𝐺𝐺𝐺𝐺, and 𝐶𝐶𝐶𝐶 denote surface water, snow water, soil moisture, 310 

groundwater, and canopy water storages (all terms have the dimension [𝐿𝐿]), respectively. The 311 

changes in storage terms (Equation 3) include GW storage and water table changes due to 312 

pumping; changes in surface water reservoirs, and changes in soil moisture due to human water 313 

management (e.g., irrigation).  314 

Second, for the simulation with natural setting, we use the water balance approach (Famiglietti et 315 

al., 2011; Nanteza et al., 2016; Rodell et al., 2004; Syed et al., 2008; Zeng et al., 2008) in which 316 

the TWS change is deduced from monthly precipitation (P), evapotranspiration (ET), and runoff 317 

(R) as: 318 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝑃𝑃 − 𝐸𝐸𝐸𝐸 − 𝑅𝑅                                          (4) 319 

where, 𝑃𝑃 is the observed precipitation, 𝐸𝐸𝐸𝐸 is the simulated actual evapotranspiration, and 𝑅𝑅 is the 320 

simulated runoff (all terms have the dimension [𝐿𝐿𝑇𝑇−1]). Equation 4 can be used over large river 321 

basins and long-term simulation period with the assumption of no lateral GW fluxes in the 322 

boundaries (Long et al., 2017). However, we use the water balance method only for the 323 

simulation with natural setting (and not for HI simulations) due to high uncertainties in flux 324 

variables, particularly in 𝐸𝐸𝐸𝐸 and 𝑅𝑅 (Long et al., 2014, 2017; Wang et al., 2015b) that are strongly 325 

influenced by HI such as irrigation, surface water flow regulation, and 𝐺𝐺𝐺𝐺 storage change due to 326 

pumping. While we use Equation 3 to derive the TWS from model simulations with all HI 327 

schemes activated which is used for model evaluation with GRACE, the TWS estimated by 328 

using Equation 4 (based on HiGW-MAT model) is combined with GRACE data to isolate the 329 

human-induced TWS variations in the highly-managed river basins.  330 

To better investigate the performance of models in TWS simulations, we decompose the 331 

observation data and simulated time series into general trend and seasonality using moving 332 

averages and applying convolution filter. In the decomposition progress, the data (𝑌𝑌[𝑡𝑡]) is 333 

disaggregated into general trend (𝑇𝑇[𝑡𝑡]), seasonality (𝑆𝑆[𝑡𝑡]), and residuals (𝑒𝑒[𝑡𝑡]) to form the 334 

additive model: 𝑌𝑌(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) + 𝑆𝑆(𝑡𝑡) + 𝑒𝑒(𝑡𝑡).  335 

3.3. The Uncertainty from Climate Forcing Data 336 

We examine the uncertainty in the simulated TWS by using different forcing datasets listed in 337 

Section 2.2. For this purpose, we use only the HiGW-MAT model which is driven by the three 338 

forcing datasets. Among the three datasets, we use the data from Kim et al. (2009) to derive the 339 

TWS used for the spatio-temporal analysis, including the comparison with the results from PCR-340 

GLOBWB model which is driven by the WFDEI data, and the estimation of CCR because the 341 

same data has been used in our previous model validation studies (Pokhrel et al., 2012a, 2012b, 342 

2015). The other two datasets are then used to examine the uncertainties in simulated TWS that 343 

are caused by the use of different forcing data. We did so to ensure that the HiGW-MAT 344 

simulations used to derive the key conclusion are well-validated before.  345 

The results from the uncertainty analysis are not directly compared with GRACE and so, we 346 

present the gridded scaling factors to account for the signal loss caused by filters and smoothers. 347 

The scaling factors that also referred as multiplicative factors are derived from the least squares 348 
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fit (Equation 5) between the gridded filtered and unfiltered TWS changes from the HiGW-MAT 350 

model (see Landerer and Swenson, 2012 and Long et al., 2015a for details).  351 

𝑀𝑀 = ∑ (𝑆𝑆𝑡𝑡 − 𝑘𝑘𝑆𝑆𝑓𝑓)2𝑇𝑇    (5) 352 

where, 𝑀𝑀 is the objective function to be minimized, 𝑆𝑆𝑡𝑡 is the true signal (model output), 𝑆𝑆𝑓𝑓 is the 353 

filtered signal, 𝑇𝑇 is the time steps (here, months in 2002-2008), and 𝑘𝑘 is the scaling factor.  354 

4. Results 355 

4.1. Spatial Patterns in TWS Variations and Contribution of Different Components 356 

We first evaluate the spatial variability of the long-term trend in total TWS variations simulated 357 

by the two models with GRACE (the mean of CSR, JPL, and GFZ) TWS trend (Figure 1). Due 358 

to high susceptibility of the linear trend to the selection of time window, we use the 2002-2008 359 

period that represents high diversity in signal patterns with relatively distinct spatial variations in 360 

positive and negative trends among natural and human-affected global regions, especially the 361 

downward TWS trends due to GW depletion. Overall, a good agreement can be seen between 362 

GRACE (Figure 1a), and both HiGW-MAT (Figure 1b), and PCR-GLOBWB (Figure 1c) models 363 

in terms of the direction of change; however, significant discrepancies are also apparent in terms 364 

of the magnitude. For example, the global hotspots of GW depletion such as the northwestern 365 

India and parts of Pakistan, the North China Plain, and parts of Middle East (where the changes 366 

in total TWS are known to be dominated by GW storage change) are detected in both GRACE 367 

and models but the magnitude of changes varies largely among the three estimates. In northwest 368 

India, clear differences can be seen; while GRACE data suggest a small downward trend, HiGW-369 

MAT suggests a much larger TWS depletion and PCR-GLOBWB shows little change. In 370 

California Central Valley, HiGW-MAT simulates a larger decrease in TWS compared to the 371 

other two estimates, which is likely due to overestimation of GW pumping as suggested by 372 

Pokhrel et al. (2015). The performance of PCR-GLOBWB is generally good in many of these 373 

regions that are affected by human activities but it doesn't reproduce the GRACE-detected 374 

negative trends in parts of southeastern Australia and northeastern China.  375 

In some of the regions with relatively low human influence such as the Amazon, Orinoco, and 376 

Parana river basins in South America and southern parts of Africa, significant variations are 377 

obvious among the models and GRACE both in the sign and magnitude. In the Amazon and 378 
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Orinoco, the HiGW-MAT model captures the GRACE trend reasonably well while the PCR-380 

GLOBWB shows a larger deviation. On the contrary, in the southern parts of Africa HiGW-381 

MAT simulates a large positive trend while PCR-GLOBWB simulates a milder trend, consistent 382 

with GRACE. In the river basins in the northern high latitude such as the Yukon, GRACE 383 

detects a large negative TWS trend during 2002-2008 which has been suggested to be due to 384 

glacier melts, permafrost thaw, and snow cover shrinkage (Ge et al., 2013; Spence, 2002; St. 385 

Jacques and Sauchyn, 2009; Wang et al., 2015a), processes that are not explicitly simulated by 386 

both models.  387 

# Figure 1 to be inserted here 388 

The contribution of the individual storage components to total TWS is quantified for 30 river 389 

basins. The river basins are selected considering: (a) a wide coverage over different climatic 390 

regions and continents, and (b) a good balance between natural and human-affected regions. 391 

Figure 2 depicts the river basins along with the CCR calculated by using HiGW-MAT model 392 

results. The size of the circles is proportional to the seasonal amplitude of the total TWS 393 

variation, with the largest amplitude being 500 mm in the Orinoco river basin. Both models used 394 

in the study do not explicitly simulate glacier processes, so the surface water component includes 395 

only snow and river water. As expected, in the northern high latitudes and polar regions snow 396 

storage component dominates the TWS. The highest contribution of snow is found in the 397 

Yenisey (61%), Mackenzie (60%), Yukon (59%), Lena (54%), and OB (54%) river basins. 398 

Moving toward the mid-latitudes and the subtropical area, high snow storage is substituted by 399 

surface and subsurface storages. The highest contribution of surface water storage can be seen in 400 

the Yangtze (33%), Brahmaputra (28%), and Ganges (20%), all located in the subtropics and 401 

managed by large number of reservoirs (Lehner et al., 2011). Subsurface water storage 402 

dominatingly modulates the total TWS variations in the temperate and tropical regions such as 403 

the Niger (97%), Parana (90%), Tocantins (90%), and Congo (89%) river basins, and also in 404 

river basins with semi-arid climates such as the Murray–Darling (95%) and Euphrates (88%) 405 

basins. The contribution of subsurface water storage is also found to be large in the river basins 406 

with strong human influence, particularly in regions where excessive GW is used for irrigation 407 

(e.g., the Indus, Huang-He, Euphrates, and Murray-Darling basins).  408 

# Figure 2 to be inserted here 409 
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4.2. Temporal Variability of TWS in Global Basins: Human-induced TWS Change 410 

Figure 3 presents the seasonal cycle of TWS variations from GRACE, HiGW-MAT, and PCR-411 

GLOBWB for the selected basins. We present the range of variations among the three SH 412 

solutions (CSR, JPL, and GFZ) as the gray-shaded band. In this figure, the basins have been 413 

classified into three categories, namely the natural, managed, and snow-dominated which are 414 

shown with white, yellow, and light-blue background, respectively. Similar to the spatial patterns 415 

of the long-term trend (Figure 1), a generally good agreement can be seen between GRACE 416 

products and models, especially in the basins with less human influence and snow contribution 417 

(white background). In some of the managed and snow-dominated basins such as the Huang-He 418 

(Yellow river), Amur, Murray-Darling, and Yukon the GRACE-model agreement is generally 419 

poor for both models. In the basins such as the Huang-He, Indus, Amur, Lena, Mackenzie, and 420 

Yukon notable difference between the two models are also obvious both in terms of the seasonal 421 

amplitude and timing of peak.  422 

Also shown in Figure 3 are the individual TWS components (i.e., snow, river, soil, and GW 423 

storages) to scrutinize how different storage compartments modulate the total TWS signal in 424 

different geographic and climatic regions. For clarity of view we present these details only from 425 

the HiGW-MAT model. In many of the selected basins where the contribution of snow is 426 

relatively small, the seasonal TWS signal is strongly modulated by the variations in subsurface 427 

storage, which is governed by the inverse relationship between soil moisture and GW. These two 428 

components compete for the same storage space and thus evolve over time in opposite phase 429 

(Duffy, 1996; Pokhrel et al., 2013). Note that in HiGW-MAT, the soil moisture and GW are 430 

estimated as water stored above and below the water table depth, respectively, which is different 431 

than in typical global LSMs and GHMs that consider soil moisture to be the water stored within 432 

the fixed soil depth (typically top 1-2m) resulting in the same-phase relationship between soil 433 

moisture and groundwater storages, but with certain time lag. The dominance of surface water 434 

can be seen in basins such as the Ganges, Brahmaputra, and Mekong where the seasonal flood 435 

pulse transports large volume of water during the monsoon season. In snow-dominated basins 436 

such as the Mackenzie, Yenisey, and Yukon a strong seasonal signal of snow accumulation can 437 

be seen during the boreal spring which is followed by an increase in river water arising from 438 

snowmelt.  439 
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# Figure 3 to be inserted here 440 

In figure 4, we provide further details on the inter-annual variability of TWS from different 441 

GRACE solutions (shown as shaded range) and both models along with the individual 442 

components from HiGW-MAT. All results are shown as anomalies relative to the 2004-2009 443 

time-mean baseline to be consistent with GRACE. The simulated TWS from both expansions 444 

(Equation 3 and Equation 4) is truncated at degree and order 60 and smoothed by the 300-km 445 

Gaussian filter in all figures corresponding to GRACE products. In figure 4, the slopes of the 446 

trend lines from GRACE, models (with activated HI modules), and the water balance analysis 447 

(i.e., the simulation without human activities) are shown at the bottom of each panel. The 𝑝𝑝-448 

value approach is used to measure the statistical significance of linear trends from GRACE and 449 

model outputs, i.e., to determine the probability of whether the simulated trends are non-zero and 450 

that is statistically significant (Zhou et al., 2014). Results indicate that the TWS trend in natural 451 

simulation, which is mostly close to zero, is not statistically significant (𝑝𝑝 values > 0.05) in most 452 

of the managed basins. Further, the 𝑝𝑝 values indicate that the PCR-GLOBWB trend for 453 

Euphrates, Indus, Murray-Darling, and Volga basins, the GRACE trend for Brahmaputra, 454 

Euphrates, Ganges, Indus, and Volga basins, and the HiGW-MAT trend for most of the managed 455 

basins are statistically significant (𝑝𝑝 values < 0.05). 456 

For most of the managed river basins (except for the Colorado and Murray-Darling), the long-457 

term negative trend in the total TWS is larger in GRACE solutions than in the results from water 458 

balance, suggesting that these basins experienced certain loss of water during the analysis period. 459 

The PCR-GLOBWB model mostly follows the GRACE trends in most river basins but the 460 

HiGW-MAT model suggests a substantially larger negative trend in TWS in the managed basins 461 

that is primarily due to the decline in GW storage (noticeable in the Indus and Huang-He basins). 462 

This also implies that the pumping scheme in HiGW-MAT may have overestimated GW 463 

pumping as discussed earlier in Figure 1. Colorado and Murray-Darling, show unexpected 464 

increase in GRACE TWS that represents smaller deficit rate than in the natural simulation. The 465 

positive trend in GRACE data in these basins is primarily due to some wet cycles (e.g., year 466 

2005 and year 2010) in their long-term inter-annual variability of TWS. For instance, the 467 

precipitation increase in the wet year of 2010 in Murray-Darling basin and also the snow amount 468 

rise that is followed by two wet cycles around the years 2005 and 2010 in the Colorado basin 469 
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resulted in such positive overall trends during 2002-2010. As such, if the wet cycles of 2005 and 470 

2010 are excluded from the analysis, Murray-Darling and Colorado basins also show a 471 

significant TWS loss.  472 

The largest difference between GRACE and natural trends can be seen in the Euphrates, a 473 

transboundary river basin between Iraq, Turkey, Jordan, and Saudi Arabia. While GRACE TWS 474 

regression line drops at rate of 2.13 𝑐𝑐𝑐𝑐/𝑦𝑦𝑦𝑦, only 0.06 𝑐𝑐𝑐𝑐/𝑦𝑦𝑦𝑦 of that is caused by natural 475 

variability, and the rest (2.07 𝑐𝑐𝑐𝑐/𝑦𝑦𝑦𝑦) is caused by direct HI. The Ganges river basin with the 476 

second largest divergence between the natural and GRACE trend lines also experiences a 477 

1.99 𝑐𝑐𝑐𝑐/𝑦𝑦𝑦𝑦 human-induced TWS loss. For this basin, HiGW-MAT performs well especially in 478 

simulating the drought years (negative peaks). In the Indus, despite a relatively constant and 479 

positive precipitation trend as well as a small negative P-ET-R trend (0.01 𝑐𝑐𝑐𝑐/𝑦𝑦𝑦𝑦 of water 480 

storage loss), GRACE shows a larger drop in TWS that is 0.82 𝑐𝑐𝑐𝑐/𝑦𝑦𝑦𝑦. Clearly, this huge 481 

difference is due to the widely reported depletion of groundwater resources in part of the basin 482 

(Rodell et al., 2009; Tiwari et al., 2009). For river basins with considerable snow water 483 

component (distinguished by light blue background color), HiGW-MAT performs better. In 484 

particular, HiGW-MAT shows the seasonal variations consistent with GRACE (Figures 3 and 4) 485 

likely due to advanced energy balance scheme. In other basins that represent low human 486 

influence and small contribution from snow (e.g., Amazon, Danube, and Niger), both models 487 

simulate TWS variability and seasonal cycle well. 488 

# Figure 4 to be inserted here 489 

To provide further insights, we present a decomposition of the TWS signal into the general trend 490 

and seasonality for two selected river basins, namely the Indus (managed) and the Lena (snow-491 

dominated). As shown in Figure 5, for the Indus while the PCR-GLOBWB simulates both the 492 

trend and seasonality in line with GRACE, HiGW-MAT doesn't capture the long-term trend 493 

despite simulating the seasonality relatively well. This further confirms that the issue in HiGW-494 

MAT could be the overestimation of GW pumping that results in a larger depletion rate even 495 

though the model simulates the seasonal dynamics of the various land surface hydrologic 496 

processes as well as water table dynamics. The results for the Lena are contrasting. Here, both 497 

models capture the general trend rather accurately but the PCR-GLOBWB fails to simulate the 498 

seasonality and timing of TWS anomaly. Analysis of the results for other basins such as the 499 
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Amudarya, Colorado, and Euphrates (not shown) suggests that the performance of HiGW-MAT 500 

in these basins is similar to that in the Indus but it performs relatively well in the Brahmaputra, 501 

Ganges, and Volga basins. The performance of PCR-GLOBWB in most of the other snow-502 

dominated basins is similar to that in the Lena.  503 

# Figure 5 to be inserted here 504 

4.3. The Uncertainty Arising from the Climate Forcing Data 505 

The standard deviation of 2002-2008 trend map from three climate forcing datasets illustrates 506 

high uncertainty in the order of 10 𝑐𝑐𝑐𝑐/𝑦𝑦𝑦𝑦 (Figure 6a), highlighting the significant impact of 507 

forcing data selection in model results. The standard deviation map of TWS trend drawn from 508 

the filtered simulations needs the spatial distribution of scaling factors (Figure 6b) to provide 509 

more realistic assessment of existent uncertainties originate from the forcing data. Considering 510 

the scaling factors, the restored TWS trend compared to filtered one can be of the order of 2-3 511 

times larger in some grid cells (e.g., northwestern India). The spatial pattern of standard 512 

deviation in TWS trend using three different forcing datasets (Figure 6) in comparison with the 513 

discrepancies between the spatial pattern of TWS trend from GRACE and HiGW-MAT (Figure 514 

1a vs 1b) notes that the discrepancies between model results and GRACE could partly be 515 

contributed by high uncertainties arising from forcing datasets. Furthermore, high standard 516 

deviation is particularly obvious over the human affected areas comprising northwest of India, 517 

northeastern China, southern Australia, Argentina, central US, and west regions of the Caspian 518 

Sea. This is reasonable because the forcing datasets are based on reanalysis (e.g., Onogi et al., 519 

2007), which are produced by assimilating the available observations with the results from 520 

atmospheric models that typically do not account for human activities. That is, the forcing 521 

datasets, particularly precipitation, may have relatively larger biases in the highly-managed 522 

regions.    523 

# Figure 6 to be inserted here 524 

5. Discussion 525 

5.1. Spatial Patterns in TWS Variations and Contribution of Different Components 526 

The spatial patterns of the long-term trend in total TWS from models show a generally good 527 

agreement with GRACE in capturing the direction of change; however, significant differences 528 

are found in the magnitude of TWS signal between the two models and GRACE as well as 529 
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between the two models. These differences are highly pronounced especially in the global 532 

hotspots of GW overexploitation identified by various previous studies. This is found to be 533 

caused partly by the overestimation of groundwater abstraction and the associated change in 534 

subsurface storage in the HiGW-MAT model. In other regions, such as the northern high 535 

latitudes where the TWS variations are largely modulated by snow water storage, the HiGW-536 

MAT model generally captures the GRACE-based TWS trend but the PCR-GLOBWB model 537 

shows a larger deviation from the GRACE trend. The differences between GRACE and models 538 

in the high latitudes is likely due to glacier melts, permafrost thaw, and snow cover shrinkage 539 

processes that are not explicitly represented in the models as in any other current-generation 540 

LSMs and GHMs (Chen et al., 2017; Long et al., 2017). In most of the regions with relatively 541 

less human influence and snow contribution (e.g., parts of Europe, western Australia, central 542 

Asia and northern Africa) both models perform relatively well, suggesting higher reliability of 543 

model results in these areas.  544 

These analyses contribute to the discussion on how the two models that include HI 545 

representations regenerate the spatial patterns of the long-term trend in TWS observed by 546 

GRACE. Our results corroborate the findings of previous studies that have reported certain 547 

discrepancies between GRACE and models in some of the river basins studied here by using 548 

other GHMs and LSMs such as the CLM (Swenson and Lawrence, 2015), WaterGAP model 549 

(Döll et al., 2014), and GLDAS (Jin and Feng, 2013) models. Together, these findings suggest 550 

that a single model cannot be identified as the best model over all global regions, implying that 551 

an ensemble model mean could provide a better estimate of TWS variations. 552 

5.2. Temporal Variability of TWS in Global Basins: Human-induced TWS Change 553 

An in-depth analysis of the seasonal cycle of TWS variations further suggests that the PCR-554 

GLOBWB tends to perform better in some of the managed basins (e.g., the Indus), in line with 555 

studies such as Wada et al. (2014). However, it is found that both models do not accurately 556 

capture the seasonal dynamics of TWS in some of these managed basins such as the Huang-He 557 

and Murray-Darling. It is also evident from the results that while one model captures the 558 

amplitude of the positive seasonal anomaly accurately, it fails to reproduce the negative seasonal 559 

anomaly with similar accuracy, and this applies to both models (see Huang-He, Indus, Murray-560 

Darling basins). This implies that while certain human water management practices such as 561 
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reservoir operation may have been well simulated, the model may have failed to accurately 562 

simulate other processes such as GW dynamics that can act as a buffer during high and low flow 563 

seasons. It is also important to note that there are differences among the GRACE products in 564 

some of these basins making it difficult to evaluate the model performance with high confidence. 565 

In the snow-dominated basins (e.g., the Lena, Amur, Mackenzie, and Yukon), the performance 566 

of HiGW-MAT is relatively good likely due to its relatively robust and physically-based snow 567 

melt scheme which is based on multi-layer snow energy balance (Takata et al., 2003). 568 

The partitioning of inter-annual TWS changes into natural and human components in the highly-569 

managed basins such as the Indus, Amudarya, Ganges, Brahmaputra, Euphrates, and Volga 570 

suggests a large deviation in the natural trend from the trend in GRACE data, indicating an 571 

expansion of human influence in these basins during 2002-2010. It is worth noting that the rates 572 

of TWS change from HI simulations are remarkably different from GRACE observations in 573 

many basins, which highlights the uncertainties in simulated trends. The GW extraction scheme 574 

in HiGW-MAT tends to consistently overestimate GW withdrawals in some of the human 575 

affected basins such as Amudarya, Colorado, Euphrates, Huang-He, and Indus, causing larger 576 

TWS decline compared with both GRACE and the PCR-GLOBWB model. However, in other 577 

basins such as the Brahmaputra, Ganges, Mekong, and Volga, which also include some managed 578 

agricultural regions, no such overestimation of GW depletion is found. The varying performance 579 

of HiGW-MAT in the managed basins is likely owing to the use of inaccurate parameters such as 580 

the specific yield or overestimation of agricultural demands caused by overestimated irrigated 581 

areas (Giordano, 2009; Pokhrel et al., 2015). Similar to the results for the spatial variability, the 582 

PCR-GLOBWB performs relatively better in the managed basins but simulates large deviations 583 

from both GRACE and HiGW-MAT in the snow-dominated basins such as the Amur, Lena, and 584 

Yukon.  585 

Further, the analysis of the general trend and seasonal variability in the Indus and Lena river 586 

basins shows that while one model captures the general trend in one basin the other model 587 

performs better in capturing the seasonal variability. These large differences in capturing 588 

different aspects of the TWS variations in river basins located in different regions again suggest 589 

that a single model cannot be used with high reliability in all global regions or to simulate all 590 

aspects of TWS variations.  591 



21 
 

5.3. The Uncertainty Arising from the Climate Forcing Data 592 

Results from the HiGW-MAT TWS simulations with three different meteorological forcing 593 

datasets reveal that, in some regions, the uncertainties in TWS trends due to the uncertainty in 594 

forcing datasets are as high as the differences among different models, or among different 595 

models and GRACE data. The forcing uncertainties are particularly pronounced in the highly-596 

managed regions, possibly due to the large uncertainties in the reanalysis products in which 597 

results from models without HI are assimilated. The spatial distribution of gain factors derived 598 

from the HiGW-MAT model is comparable with gridded scaling factors obtained from other 599 

LSMs (Landerer and Swenson, 2012; Long et al., 2015a) and suggesting even larger 600 

uncertainties over some grid cells. Such large uncertainties arising from forcing datasets suggest 601 

that the model results of TWS based on one particular forcing data need to be interpreted with 602 

enough caution, which is especially important when using the model results to evaluate the 603 

disagreements among different GRACE solutions and the performance of various filtering and 604 

other post-processing techniques applied to GRACE solutions. 605 

6. Conclusions 606 

This study quantifies the impacts of human activities (e.g., irrigation, reservoir operation, and 607 

GW extraction) on TWS variations over global regions by using multiple GRACE SH products 608 

and results from two different hydrological models. Two state-of-the-art models are used, 609 

namely the HiGW-MAT LSM and PCR-GLOBWB GHM, both simulate the natural as well as 610 

anthropogenic flow of water, also taking into account groundwater abstractions and associated 611 

changes in subsurface water storage. We find that despite noteworthy progress that has been 612 

made in incorporating human factors in global-scale LSMs and GHMs, significant limitations 613 

still remain in accurately simulating the spatial patters and temporal variations in TWS over all 614 

global regions. In particular, results indicate that while one model performs better in the highly-615 

managed river basins, it fails to reproduce the GRACE-observed signal in snow-dominated 616 

regions, and vice versa. Further, in some regions the uncertainties in TWS trends due to the 617 

uncertainties in forcing datasets underscore the need to consider forcing data uncertainties when 618 

evaluating the disagreements among different model results and GRACE. Our results from the 619 

partitioning of total TWS into natural and human-induced components suggest a continuing 620 

decline in TWS through 2002-2010 in the Euphrates, Ganges, Brahmaputra, Volga, and Indus 621 

river basins, which is largely human-induced. Overall, our results highlight the need to improve 622 
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model parameterizations for the simulation of human water management and snow physics (e.g., 623 

glacier melts, permafrost thaw, and snow cover shrinkage) to reliably simulate the spatial and 624 

temporal variability in TWS over all global regions.  625 
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Figure Captions: 1130 

 1131 

Figure 1. Spatial pattern of TWS trend from GRACE, and the two models (HiGW-MAT and 1132 

PCR-GLOBWB) for 2002-2008. GRACE results are shown as the mean of the solutions from 1133 

three different processing centers (i.e., CSR, JPL, and GFZ).   1134 

Figure 2. Map showing the selected 30 river basins with the component contribution ratio (CCR) 1135 

for snow water, surface water (rivers and reservoirs), and subsurface water (soil moisture and 1136 

groundwater) storages, shown as pie charts for each of the basins. The CCR values are calculated 1137 

by using HiGW-MAT model results. The size of pie chart is proportional to the seasonal 1138 

amplitude of TWS variation, with the largest amplitude being 500 mm in the Orinoco river basin. 1139 

Figure 3. Seasonal cycle of simulated and observed TWS and components for the selected river 1140 

basins. Yellow background indicates the region with human impacts and light blue background 1141 

represents snow-dominated basin. Basins with relatively less human influence and contribution 1142 

from snow are shown with white background. The thick black line represents the mean of three 1143 

GRACE products from CSR, JPL, and GFZ and the gray-shaded band shows the range of 1144 

variations among the three GRACE products. While the simulated total TWS from both models 1145 

are shown, the individual components (i.e., snow, river and reservoir, soil moisture, and 1146 

groundwater storages) are shown only from the HiGW-MAT model for clarity of view.  1147 

Figure 4. Inter-annual variability in TWS from GRACE and the two models. Background colors 1148 

represent the same as in Figure 3. For the managed basins (top five rows with yellow 1149 

background), the GRACE data and model results are plotted as line diagram on the top and the 1150 

results from the water balance analysis using the natural simulations (Equation 4) are shown on 1151 

the bottom as bars. The gray-shaded range represents the range of variations of the GRACE 1152 

products (CSR, JPL, and GFZ) along with the thick black line that shows the mean. The 1153 

individual water storage components are shown only from the HiGW-MAT model for clarity of 1154 

view. 1155 

Figure 5. Decomposition of TWS time series into the general trend and seasonality for the Lena 1156 

(snow-dominated) and Indus (managed) river basins. 1157 

Figure 6. (a) Standard deviation in TWS trend calculated for 2002-2008 based on the results 1158 

from HiGW-MAT model simulated by using three different forcing datasets, (b) the spatial 1159 

distribution of scaling factors derived from the HiGW-MAT model. 1160 
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