181 research outputs found

    Comment on "Giant Nernst Effect due to Fluctuating Cooper Pairs in Superconductors" by M.N. Serbyn, M.A. Skvortsov, A.A. Varlamov, and V. Galitski

    Full text link
    In a recent Letter, Serbyn et al. [A] investigated thermomagnetic effects above the superconducting transition and generalized previous works for arbitrary magnetic fields and temperatures. While the results of [A] have been confirmed in [B], we have strong objections: (i) According to our results [C], the linear response calculation does not require any correction from the magnetization currents; (ii) The result of [A,B] is giant, because unlike the normal Fermi liquid, it is of zero order in the particle-hole asymmetry. Changing the interaction constant in the Cooper channel leads to ridiculously large results even for nonsuperconducting metals; (iii)Derived in [A] the Einstein-type relation for thermomagnetic coefficient contradicts to text-book results. [A] M.N. Serbyn, M.A. Skvortsov, A.A. Varlamov, V. Galitski, Phys. Rev. Lett. 102, 067001 (2009). [B] K. Michaeli and A.M. Finkel'stein, EPL 86, 27007 (2009). [C] A. Sergeev et al., Phys. Rev. B 77, 064501 (2008)

    Is moderate hypofractionation accepted as a new standard of care in north america for prostate cancer patients treated with external beam radiotherapy? Survey of genitourinary expert radiation oncologists

    Get PDF
    INTRODUCTION: Several recent randomized clinical trials have evaluated hypofractionated regimens against conventionally fractionated EBRT and shown similar effectiveness with conflicting toxicity results. The current view regarding hypofractionation compared to conventional EBRT among North American genitourinary experts for management of prostate cancer has not been investigated. MATERIALS AND METHODS: A survey was distributed to 88 practicing North American GU physicians serving on decision - making committees of cooperative group research organizations. Questions pertained to opinions regarding the default EBRT dose and fractionation for a hypothetical example of a favorable intermediate - risk prostate cancer (Gleason 3 + 4). Treatment recommendations were correlated with practice patterns using Fisher's exact test. RESULTS: Forty - two respondents (48%) completed the survey. We excluded from analysis two respondents who selected radical hypofractionation with 5 - 12 fractions as a preferred treatment modality. Among the 40 analyzed respondents, 23 (57.5%) recommend conventional fractionation and 17 (42.5%) recommended moderate hypofractionation. No demographic factors were found to be associated with preference for a fractionation regimen. Support for brachytherapy as a first choice treatment modality for low - risk prostate cancer was borderline significantly associated with support for moderate hypofractionated EBRT treatment modality (p = 0.089). CONCLUSIONS: There is an almost equal split among North American GU expert radiation oncologists regarding the appropriateness to consider moderately hypofractionated EBRT as a new standard of care in management of patients with prostate cancer. Physicians who embrace brachytherapy may be more inclined to support moderate hypofractionated regimen for EBRT. It is unclear whether reports with longer followups will impact this balance, or whether national care and reimbursement policies will drive the clinical decisions. In the day and age of patient - centered care delivery, patients should receive an objective recommendation based on available clinical evidence. The stark division among GU experts may influence the design of future clinical trials utilizing EBRT for patients with prostate cancer

    Coherence Length of Excitons in a Semiconductor Quantum Well

    Get PDF
    We report on the first experimental determination of the coherence length of excitons in semiconductors using the combination of spatially resolved photoluminescence with phonon sideband spectroscopy. The coherence length of excitons in ZnSe quantum wells is determined to be 300 ~ 400 nm, about 25 ~ 30 times the exciton de Broglie wavelength. With increasing exciton kinetic energy, the coherence length decreases slowly. The discrepancy between the coherence lengths measured and calculated by only considering the acoustic phonon scattering suggests an important influence of static disorder.Comment: 4 Pages, 4 figure

    Quantum Dot Infrared Photodetectors: Photoresponse Enhancement Due to Potential Barriers

    Get PDF
    Potential barriers around quantum dots (QDs) play a key role in kinetics of photoelectrons. These barriers are always created, when electrons from dopants outside QDs fill the dots. Potential barriers suppress the capture processes of photoelectrons and increase the photoresponse. To directly investigate the effect of potential barriers on photoelectron kinetics, we fabricated several QD structures with different positions of dopants and various levels of doping. The potential barriers as a function of doping and dopant positions have been determined using nextnano3 software. We experimentally investigated the photoresponse to IR radiation as a function of the radiation frequency and voltage bias. We also measured the dark current in these QD structures. Our investigations show that the photoresponse increases ~30 times as the height of potential barriers changes from 30 to 130 meV

    Cylindrical Two-Dimensional Electron Gas in a Transverse Magnetic Field

    Get PDF
    We compute the single-particle states of a two-dimensional electron gas confined to the surface of a cylinder immersed in a magnetic field. The envelope-function equation has been solved exactly for both an homogeneous and a periodically modulated magnetic field perpendicular to the cylinder axis. The nature and energy dispersion of the quantum states reflects the interplay between different lengthscales, namely, the cylinder diameter, the magnetic length, and, possibly, the wavelength of the field modulation. We show that a transverse homogeneous magnetic field drives carrier states from a quasi-2D (cylindrical) regime to a quasi-1D regime where carriers form channels along the cylinder surface. Furthermore, a magnetic field which is periodically modulated along the cylinder axis may confine the carriers to tunnel-coupled stripes, rings or dots on the cylinder surface, depending on the ratio between the the field periodicity and the cylinder radius. Results in different regimes are traced to either incipient Landau levels formation or Aharonov-Bohm behaviour.Comment: 23 pages, 14 figure

    Tunneling of a Quantized Vortex: Roles of Pinning and Dissipation

    Full text link
    We have performed a theoretical study of the effects of pinning potential and dissipation on vortex tunneling in superconductors. Analytical results are obtained in various limits relevant to experiment. In general we have found that pinning and dissipation tend to suppress the effect of the vortex velocity dependent part of the Magnus force on vortex tunneling.Comment: Latex, 12 page

    Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

    Get PDF
    We investigate the current injection into a ballistic conductor under the space-charge limited regime, when the distribution function of injected carriers is an arbitrary function of energy F_c(epsilon). The analysis of the coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially suppressed by Coulomb correlations, and the suppression level is determined by the shape of F_c(epsilon). This is in contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved shot-noise suppression has been found for an arbitrary (non-Poissonian) injection, which may suggest a new field of investigation on the optimization of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde

    Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

    Get PDF
    We investigate the current injection into a ballistic conductor under the space-charge limited regime, when the distribution function of injected carriers is an arbitrary function of energy F_c(epsilon). The analysis of the coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially suppressed by Coulomb correlations, and the suppression level is determined by the shape of F_c(epsilon). This is in contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved shot-noise suppression has been found for an arbitrary (non-Poissonian) injection, which may suggest a new field of investigation on the optimization of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde

    Simultaneous control of magnetic topologies for reconfigurable vortex arrays

    Get PDF
    The topological spin textures in magnetic vortices in confined magnetic elements offer a platform for understanding the fundamental physics of nanoscale spin behavior and the potential of harnessing their unique spin structures for advanced magnetic technologies. For magnetic vortices to be practical, an effective reconfigurability of the two topologies of magnetic vortices, that is, the circularity and the polarity, is an essential prerequisite. The reconfiguration issue is highly relevant to the question of whether both circularity and polarity are reliably and efficiently controllable. In this work, we report the first direct observation of simultaneous control of both circularity and polarity by the sole application of an in-plane magnetic field to arrays of asymmetrically shaped permalloy disks. Our investigation demonstrates that a high degree of reliability for control of both topologies can be achieved by tailoring the geometry of the disk arrays. We also propose a new approach to control the vortex structures by manipulating the effect of the stray field on the dynamics of vortex creation. The current study is expected to facilitate complete and effective reconfiguration of magnetic vortex structures, thereby enhancing the prospects for technological applications of magnetic vortices.ope
    corecore