496 research outputs found

    Diffeomorphic random sampling using optimal information transport

    Full text link
    In this article we explore an algorithm for diffeomorphic random sampling of nonuniform probability distributions on Riemannian manifolds. The algorithm is based on optimal information transport (OIT)---an analogue of optimal mass transport (OMT). Our framework uses the deep geometric connections between the Fisher-Rao metric on the space of probability densities and the right-invariant information metric on the group of diffeomorphisms. The resulting sampling algorithm is a promising alternative to OMT, in particular as our formulation is semi-explicit, free of the nonlinear Monge--Ampere equation. Compared to Markov Chain Monte Carlo methods, we expect our algorithm to stand up well when a large number of samples from a low dimensional nonuniform distribution is needed.Comment: 8 pages, 3 figure

    Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping

    Get PDF
    The easy fabrication and use of nanoscale dual function pH-scanning ion conductance microscopy (SICM) probes is reported. These probes incorporate an iridium oxide coated carbon electrode for pH measurement and an SICM barrel for distance control, enabling simultaneous pH and topography mapping. These pH-SICM probes were fabricated rapidly from laser pulled theta quartz pipets, with the pH electrode prepared by in situ carbon filling of one of the barrels by the pyrolytic decomposition of butane, followed by electrodeposition of a thin layer of hydrous iridium oxide. The other barrel was filled with an electrolyte solution and Ag/AgCl electrode as part of a conductance cell for SICM. The fabricated probes, with pH and SICM sensing elements typically on the 100 nm scale, were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and various electrochemical measurements. They showed a linear super-Nernstian pH response over a range of pH (pH 2–10). The capability of the pH-SICM probe was demonstrated by detecting both pH and topographical changes during the dissolution of a calcite microcrystal in aqueous solution. This system illustrates the quantitative nature of pH-SICM imaging, because the dissolution process changes the crystal height and interfacial pH (compared to bulk), and each is sensitive to the rate. Both measurements reveal similar dissolution rates, which are in agreement with previously reported literature values measured by classical bulk methods

    Robust Online Hamiltonian Learning

    Get PDF
    In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance.Comment: 24 pages, 12 figures; to appear in New Journal of Physic

    Asymmetric Autocorrelation Function To Resolve Directional Ambiguity In PIV Images

    Get PDF
    ABSTRACT Autocorrelation of a double-exposed image, unlike cross-correlation between two images, produces a correlation function that i

    Wide Field Infrared Survey Telescope (WFIRST) Observatory Overview

    Get PDF
    NASA's Wide Field Infrared Survey Telescope (WFIRST) is being designed to deliver unprecedented capability in dark energy and exoplanet science, and to host a technology demonstration coronagraph for exoplanet imaging and spectroscopy. The observatory design has matured since 2013; we present a comprehensive description of the observatory configuration as refined during the WFIRST Phase-A study. The observatory is based on an existing, repurposed 2.4 meter space telescope coupled with a 288 megapixel near-infrared (0.6 to 2 microns) HgCdTe focal plane array with multiple imaging and spectrographic modes. Together they deliver a 0.28 square degree field of view, which is approximately 100 times larger than the Hubble Space Telescope, and a sensitivity that enables rapid science surveys. In addition, the coronagraph technology demonstration will prove the feasibility of new techniques for exoplanet discovery, imaging, and spectral analysis. A composite truss structure meters both instruments to the telescope assembly, and the instruments and the spacecraft are flight serviceable. We present configuration changes since 2013 that improved interfaces, improved testability, and reduced technical risk. We provide an overview of our Integrated Modeling results, performed at an unprecedented level for a phase-A study, to illustrate performance margins with respect to static wavefront error, jitter, and thermal drift

    Investigation of Er3+ Ions Reinforced Zinc-Phosphate Glasses for Ionizing Radiation Shielding Applications

    Full text link
    Melt quenching technique is used for preparing glasses with chemical formula (70P2 O5)– (16 − x)CdO–(14ZnO)–(xEr2 O3), (x = 1–6 mol%). These glasses were named Er1, Er2, Er3, Er4, Er5, and Er6, respectively. Photon buildup factors, fast neutron absorption, and electron stopping of the prepared glasses were examined. Glasses’ density was varied from 3.390 ± 0.003 for the Er1 glass sample to 3.412 ± 0.003 for the Er6 glass sample. The Buildup factor (BUF) spectra have relatively higher values in the Compton Scattering (CS) dominated areas compared to both Photoelectric effect (PE), and Pair Production (PP) dominated energy regions. The highest BUF appeared at the Er atom K-absorption edge, whose intensity increases as the molar concentration of Er2 O3 in the glasses increases. The photon absorption efficiency (PAE) of the glasses increases according to the trend (PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6. Fast neutron removal cross-section, FNRC (ΣR) values of the glasses obtained via calculation varied from 0.1045–0.1039 cm−1 for Er1–Er6. Furthermore, the continuous slowing down approximation mode (CSDA) range enhances the kinetic energy of electrons for all glasses. Generally, results revealed that the investigated glasses could be applied for radiation shielding and dosimetric media. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Taif University Researchers Supporting Project number (TURSP-2020/23), Taif University, Taif Saudi Arabia. "The APC was covered by "Dunarea de Jos" University of Galati, Romania, through grant no. RF3621/2021

    Inference of Experimental Radial Impurity Transport on Alcator C-Mod: Bayesian Parameter Estimation and Model Selection

    Get PDF
    We present a fully Bayesian approach for the inference of radial profiles of impurity transport coefficients and compare its results to neoclassical, gyrofluid and gyrokinetic modeling. Using nested sampling, the Bayesian Impurity Transport InferencE (BITE) framework can handle complex parameter spaces with multiple possible solutions, offering great advantages in interpretative power and reliability with respect to previously demonstrated methods. BITE employs a forward model based on the pySTRAHL package, built on the success of the well-known STRAHL code [Dux, IPP Report, 2004], to simulate impurity transport in magnetically-confined plasmas. In this paper, we focus on calcium (Ca, Z=20) Laser Blow-Off injections into Alcator C-Mod plasmas. Multiple Ca atomic lines are diagnosed via high-resolution X-ray Imaging Crystal Spectroscopy and Vacuum Ultra-Violet measurements. We analyze a sawtoothing I-mode discharge for which neoclassical and turbulent (quasilinear and nonlinear) predictions are also obtained. We find good agreement in diffusion across the entire radial extent, while turbulent convection and density profile peaking are estimated to be larger in experiment than suggested by theory. Efforts and challenges associated with the inference of experimental pedestal impurity transport are discussed.Comment: 38 pages, 19 figures, submitted for publication in Nuclear Fusio
    corecore