
Robust Online Hamiltonian Learning
Christopher E. Granade∗,1,2, Christopher Ferrie1,3,
Nathan Wiebe1,3, and D. G. Cory1,4,5

1 Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario,
Canada

2 Department of Physics, University of Waterloo, Waterloo, Ontario, Canada
3 Department of Applied Mathematics, University of Waterloo, Waterloo,

Ontario, Canada
4 Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
5 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Abstract
In this work we combine two distinct machine learning methodologies, sequential Monte Carlo
and Bayesian experimental design, and apply them to the problem of inferring the dynamical
parameters of a quantum system. The algorithm can be implemented online (during experi-
mental data collection), avoiding the need for storage and post-processing. Most importantly,
our algorithm is capable of learning Hamiltonian parameters even when the parameters change
from experiment-to-experiment, and also when additional noise processes are present and un-
known. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its
own performance. We further illustrate the practicality of our algorithm by applying it to two
test problems: (1) learning an unknown frequency and the decoherence time for a single–qubit
quantum system and (2) learning couplings in a many–qubit Ising model Hamiltonian with no
external magnetic field.

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases Quantum information, sequential Monte Carlo, Bayesian, experiment
design, parameter estimation

Digital Object Identifier 10.4230/LIPIcs.TQC.2013.106

1 Introduction

The problem of characterizing quantum systems is of fundamental importance to quantum
information science. Without an accurate understanding, for example, of the noise processes
that a quantum computer experiences, error correction may be quite difficult; furthermore,
certification of quantum dynamics is essential for determining whether the predictions made
by a quantum simulator can be trusted. This latter problem is especially timely since
quantum simulation experiments are approaching a complexity where classical computers
are unable to simulate their evolution [1, 2, 3]. Natural solutions to this problem, such as
tomographic methods [4, 5, 6, 7, 8, 9, 10], are often impractical for learning parameters
for large quantum systems, as well as for learning parameters such as T2. This prompts
the question of whether there exists a practical error robust technique that can be used to
characterize quantum systems with unknown decoherence processes.

∗ Corresponding author (cgranade@cgranade.com).

T Q C

© Christopher Granade, Christopher Ferrie, Nathan Wiebe, and D.G. Cory;
licensed under Creative Commons License CC-BY

8th Conference on Theory of Quantum Computation, Communication and Cryptography.
Editors: Simone Severini and Fernando Brandao; pp. 106–125

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.TQC.2013.106
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 107

We make this learning process tractable by utilizing information about a system, rather
than starting from worst-case assumptions such as those made in traditional quantum pro-
cess and state tomography. In practice, we often have knowledge about the dynamical
model that describes a system of interest, and wish to improve that knowledge by estimat-
ing specific model parameters. Thus, practical Hamiltonian finding can often be achieved
via a suitable parameterization of the Hamiltonian, H(x1, . . . , xd), reducing the problem to
estimating the vector of parameters x = (x1, . . . , xd). The task we consider is the design
of experiments for the purpose of deducing these parameters in the smallest number of ex-
periments possible. Our algorithm also provides a region estimation for the Hamiltonian
parameters that encloses some fixed volume of parameter space in which the mean or the
variance of the Hamiltonian parameters are expected to be found with high–probability. We
also generalize this concept to allow the algorithm to learn hyperparameters, which describe
the distribution of the Hamiltonian parameters in cases where the parameters randomly
drift between experiments. Pseudocode for all of our algorithms is given in Appendix B.

Our algorithm achieves this by combining sequential Monte Carlo methods [11] with
Bayesian experiment design [12] to choose experiments that maximize the expected reduction
in the uncertainty in the unknown parameters based on the results of prior experiments. We
call such derived strategies adaptive or online. This approach not only reduces the number
of experiments needed to learn the unknown parameters within a fixed error tolerance, but it
also makes the learning process more robust. In addition to robustness, Bayesian updating
provides a natural estimate of the uncertainty in the unknown parameters in the form of the
width of the prior distribution. In contrast, it can be difficult to quantify the uncertainty in
the estimated Hamiltonian using traditional methods based on inversion or tomography.

It is worth noting that approaches that are similar to our own have been considered very
recently in a wide variety of classical contexts [13, 14, 15, 16, 17], and also for measurement
adaptive quantum state tomography [18]. Other machine learning ideas have also been
generalized to the quantum domain [19, 20, 21, 22, 23, 24, 25]; however, to the best of our
knowledge, no method based on ideas from machine learning has been proposed for learning
unknown Hamiltonian parameters that is as broadly applicable or as robust to noise as our
method.

This paper is organized as follows. In section 2, we review the formalism of Bayesian
experimental design. Section 3 introduces the sequential Monte Carlo algorithm. In section
4, we discuss the application of our algorithm to region estimation and hyperparameter
estimation. We then explore the implications of the numerical benchmarking results in
sections 5 and 6 before concluding.

2 Experimental Design Formalism

The essence of our experimental design process is that we choose experiments not according
to a pre–determined sequence, but rather our algorithm adaptively chooses experiments that
are expected to be very informative (given the current state of knowledge of the unknown
parameters). We model a sequence of experiments as a sequence of experimental controls
{c1, . . . , cN} and a corresponding sequence of acquired data {d1, . . . , dN}. Bayesian updating
is then used to formalize how the acquired data impacts our current state of knowledge about
the unknown Hamiltonian, where we connect to the theory of parameter estimation by using
the predictions of quantum mechanics as a probabilistic model, called a likelihood function.

To clarify, suppose we have performed an experiment with control settings c1. We are
then ultimately interested in the posterior distribution Pr(x|d1; c1), the probability distri-

TQC’13

108 Robust Online Hamiltonian Learning

bution of the model parameters x given this data. By Bayes’ rule and the conditional
independence of each datum, the posterior distribution is given by

Pr(x|d1; c1) = Pr(d1|x; c1)
Pr(d1|c1) Pr(x),

where Pr(x) is the prior, which encodes any a priori knowledge of the model parameters.
Pr(d1|x; c1) is the likelihood, which can be computed using Born’s rule. The total likelihood
Pr(d1|c1) can simply be thought as a normalization factor. Subsequent experiments update
the prior according to the following iterative rule

Pr(x|dj+1, . . . ; cj+1, . . .) = Pr(dj+1|x; cj+1)
Pr(dj+1|cj+1) Pr(x|dj , . . . ; cj , . . .).

The idea of adaptive experiment design can be formalized in various ways, the most
natural for our purposes being called Bayesian experimental design [12]. For this, we conceive
of possible future data dN+1 obtained from a, possibly different, set of experimental controls
cN+1. The probability of obtaining this data can be computed from the distributions at
hand via marginalizing over model parameters

Pr(dj+1|dj , . . . ; cj+1) =
∫

Pr(dj+1|x; cj+1) Pr(x|dj , . . . ; cj , . . .) dx.

Note, in the remainder of this work, we will use the following abbreviated notation for
expectation values:

Pr(dj+1|dj , . . . ; cj+1, . . .) = Ex|dj+1,...;cj+1,...[Pr(dj+1|x; cj+1)], (1)

where the subscript on E denotes the variable for the expectation to be taken over.
The expectation value in (1) can be used to inform the algorithm about the choices of

experimental parameters that are more useful than others. This usefulness is quantified, for
a given choice of a utility function U(dj+1, cj+1), by the expected utility of an experiment

U(cj+1) = Edj+1|dj ,...;cj+1,...[U(dj+1, |cj+1)],

where U(dj+1, cj+1) is the utility we would derive if experiment cj+1 yielded result dj+1. The
choice of the utility function is motivated by the figure of merit that we want to optimize,
and will be considered in Appendix A.

3 Sequential Monte Carlo Algorithm

A major drawback of using Bayesian inference for Hamiltonian learning stems from the fact
that the parameter space is continuous. This means that the prior will have in general
support over an infinite number of possible Hamiltonians, which in turn makes applying
Bayes’ rule and sampling from the resultant posterior intractable. We address this problem
by using sequential Monte Carlo (SMC) methods, such as those described in the recent
tutorial by Doucet and Johansen [11].

At each step of the SMC algorithm, the current distribution is approximated by a
weighted sum of Dirac-delta functions, so that Pr(x|D) ≈

∑n
k=1 wk(D)δ(x − xk), where

wk(D) is a weight that describes the relative plausibility of the hypothesis xk, having ob-
served the data record D. Each term in this sum is referred to as a particle.

Since the Bayes update rule for many observations {d1, d2, . . . , dN} can be processed
sequentially by updating the weights: wk(dj+1 ∪ D) = Pr(dj+1|xk)wk(dj)/N , where N is
found by the normalization constraint that

∑
k wk(D) = 1.

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 109

The particle approximation can be made arbitrarily accurate by increasing the number
of particles, and will be a good approximation at every update provided we feed in, at
the initial stage, the appropriate weights {wk} and support points {xk}. Since both the
weights and support points of the particles carry information about distributions over the
model parameters x, we can without loss of generality choose the initial weights to be
uniform, wk = 1/n for all k, and the initial support points to be samples from the correct
prior Pr(x). Having made the particle approximation, we perform Bayes updates using the
algorithm below.

Sequential Monte Carlo techniques require careful effort to avoid introducing errors due to
limited numerical precision. The first problem any SMC algorithm runs into is zero weights.
This is doubly painful since we are effectively operating with fewer particles but using the
same amount of computational resources. Since the support of our approximate distribution
is a measure-zero set according to the correct distribution, all the weights will eventually be
zero; we cannot avoid this but it can be postponed by using resampling techniques.

Generally, the idea behind resampling is to adaptively change the location of the particles
to those which are most likely. This works because a particle approximation to a probability
distribution can be equally well approximated using constant weight particles with variable
density, or variable weight particles with constant density. Hence, we can “resample” the
distribution by using constant weight particles to approximate to the prior distribution to
alleviate problems caused by the weights of the particles becoming small enough to impact
the numerical stability of the methods. The simplest of these types of algorithm chooses n
particles (the original number), with replacement, according to the distribution of weights
then reset the weights of all particles to 1/n. Thus, zero weight particles are “moved” to
higher weight locations. To determine when to resample, we shall compare the effective
sample size ness = 1/

∑
i w

2
i to a threshold resample_threshold, which is the effective

ratio of the original number of particles n. We use resample_threshold = 0.5, as suggested
by [26].

The resampling algorithm we use was first proposed in [26] and is given explicitly in
Algorithm 2. The idea behind the algorithm conforms to the intuition given above but it
incorporates randomness to search larger volumes of the parameter space. This randomness
is inserted in the resampling algorithm by applying a random perturbation to the location
of each particle that is introduced during the resampling process. Thus, the new particles
are randomly spread around the previous locations of the old. More formally, we model this
by randomly choosing a particle location xi, then perturbing it by a normally distributed
vector ε ∼ N (0,Σ) (we will come back to how to choose the mean and covariance). The
new particles are thus samples of the convolved distribution

p(x′) =
∑
i

wi
1√

(2π)k|Σ|
exp

(
−1

2(x′ − µi)
TΣ−1(x′ − µi)

)
, (2)

where k is the number of model parameters. A distribution of this form is known as amixture
distribution, and can be efficiently sampled by first choosing a particle, then choosing a
perturbation vector.

To choose the mean µi of each term in the resampling mixture distribution, we choose
a vector that is a convex combination of the original particle location xi and the expected
model µ = E[x], so that µi = axi + (1 − a)µ, where a is a tunable parameter of the
resampling algorithm. We will use a = 0.98, as suggested by [26]. The covariance of each
perturbation is then given by Σ = (1− a2) Cov[x]. Our resampling algorithm then involves
drawing n new particles from the distribution given by (2) and setting the weight of each
new particle to 1/n.

TQC’13

110 Robust Online Hamiltonian Learning

We combine these prior algorithms to obtain Algorithm 4, which is our complete al-
gorithm for adaptively designing experiments using the SMC approximation. Note that
we have left unspecified here the choice of local optimizer; in practice, this will be chosen
depending on what works for a given experimental model. Due to the simulation cost of opti-
mization, Algorithms 3 and 4 allow for the setting of an additional parameter, approx_ratio,
that controls the quality with which the utility function is calculated.

4 Region and Hyperparameter Estimation

In addition to providing an accurate estimate of the true model parameters for the system,
it is important to be able to quantify the uncertainty in the estimated model parameters.
This task can be achieved by finding a region X̂ of the space of models such that Pr(x0 ∈ X̂)
is maximized and such that the volume Vol(X̂) is minimized.

We make the problem of region estimate amenable to analysis by SMC by reducing it to a
problem of estimating an expectation value. In particular, the probability of the true model
being within a region can be expressed as Pr(x0 ∈ X̂) = E[1X̂], where 1X̂ is the indicator
function for X̂. The expectation value of this indicator function can then be computed using
SMC as E[1X̂] ≈

∑
i wi1X̂(xi) =

∑
i,xi∈X̂ wi.

Thus, by construction, any region containing particles of total weight at least r will have
an approximate probability mass of at least r. We formalize this intuition by introducing
a probability mass function m(R) on regions R such that m(R) = E[1R]. Similarly, let
m̃(R) =

∑
i, i∈R wi be an approximation of m(R) using the SMC algorithm.

We thus seek a region X̂ such that Vol(X̂) is small, m(X̂) is large and such that X̂
is an efficiently computable property of the current SMC state. We achieve the latter two
properties by choosing some appropriate geometric function of a set of particles Xr whose
weight is above some threshold weight r; for example, the convex hull or the minimum-
volume enclosing ellipse of Xr both satisfy m̃(Xr) ≥ r and may be computed using well-
known classical algorithms [27, 28].

In practice, the covariance matrix of the posterior distribution will often suffice as a region
estimate because the posterior distribution will often be approximately normally distributed.
This assumption holds when the Fisher information is non–singular. More generally, under
the assumption of a normally distributed posterior, the error ellipse of points x satisfying

(x− µ)TΣ−1(x− µ) ≤ Z2 (3)

for some Z > 0 will contain a ratio (cdfN (Z)− cdfN (−Z))d = erf
[
Z√

2

]d
of the particle

weight, where cdfN (Z) is the cumulative distribution function for the normal distribution,
evaluated at Z. Thus, if the assumption of a normal posterior is a good approximation, then
the covariance matrix of the posterior distribution as approximated by SMC can be used as
a region estimator.

We can generalize further by considering the fact that quantum systems seldom have
consistent Hamiltonians from experiment to experiment, due to experimental errors. Thus,
we would like to form a region estimate for such Hamiltonians that encompasses experiment-
to-experiment variation, but that expands that region as little as possible. Hyperparameters
allow us to address this by switching from the problem of estimating Hamiltonian parameters
to one that involves learning the parameters that describe the distribution of Hamiltonian
parameters.

We denote the hyperparameters for a model Hamiltonian as y to avoid subtle conceptual
differences between the hyperparameters and the distributions on x that they describe. The

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 111

probability distribution for x can then be written as Pr(x|y). Despite interpretational
differences, the hyperparameters can also be learned using Algorithm 4 in exactly the same
way that x is learned. The region estimates yielded by the algorithm are region estimations
for y and, as we will show shortly, can easily be converted into region estimates for x.

The drawback to this approach is that computations of the likelihood function can be-
come much more expensive because it typically will have to be computed by sampling from
the parameterized distribution. In some important special cases, this drawback can be
avoided by analytically performing the marginalization over x,

Pr(D|y) =
∫

dxPr(D|x) Pr(x|y).

In Section 5, we discuss a particular case where the marginalization is analytically tractable.
The resulting means and covariance matrices for y can be readily converted to the

corresponding quantities for x by using the chain rule for expectation values,

Ex,y[x] = Ey[Ex|y[x]]. (4)

This expectation value can be computed using the posterior distribution Pr(y|D) and the
intermediate model distribution Pr(x|y), which will typically be easy to compute from the
definition of the hyperparameters. The covariance matrix for x is slightly more complicated.
It is straightforward to verify that

Covx,y(x) = Ey

[
Covx|y(x)

]
+ Covy

(
Ex|y[x]

)
. (5)

For the special case that x is a single parameter, the covariance can be replaced with the
variance to obtain that

Varx,y(x) = Ey

[
Varx|y(x)

]
+ Vary

(
Ex|y[x]

)
. (6)

Using the covariance ellipse region estimate given by (3) to estimate a hyperparameter
region thus translates to a region estimator for the model parameters x, if the distribution
over hyperparameters y is approximately Gaussian near its peak. In the limit of many
experiments, we find that this is a good assumption, as is discussed in Section 5.3.

5 Single-Qubit Test Case

We will now proceed to apply our techniques to learning unknown parameters in a single
qubit system. Our model has a qubit that evolves under an internal Hamiltonian of the
form H(ω) = ω

2 σz. Here ω is an unknown parameter whose value we want to estimate. An
experiment consists of preparing a single known input state ψin = |+〉, the +1 eigenstate of
σx, evolving under H for time t and performing a measurement in the σx basis.

We will slightly generalize this model by allowing noise sources which lead to a decay in
the information extractable from any measurement. This can manifest from, for example, a
T2 dephasing process which leads to the following likelihood function:

Pr(0|ω; t) = e−
t
T2 cos2

(ω
2 t
)

+ 1− e−
t
T2

2 , (7)

where ω is the unknown parameter to be estimated, t is the controllable parameter and
T2 is a known constant. This model was studied in references [29, 30, 31] where analytical
solutions based on Fisher information and the Cramer-Rao bound were given.

TQC’13

112 Robust Online Hamiltonian Learning

We consider the seemingly simple generalization of this model where both ω and T2 are
unknown. Even for such a simple generalization as this, the methods discussed in [29, 30, 31]
are not adequate for this more general problem. In particular, the Fisher matrix of any one
measurement is singular and hence the standard Cramer-Rao bound does not hold – nor is
it possible to utilize standard asymptotic approximations to normal distributions.

This generalization is closely related to the case in which T2 is infinite, but where the
“true” precession frequency ω is itself distributed according to a Gaussian distribution of
mean µ and variance σ2. In this case, following the discussion of Section 4, the probability
of data conditioned on the hyperparameters y = (µ, σ) can be found by marginalizing over
the intermediate random variable ω, so that

Pr(d|µ, σ; t) =
∫

Pr(d|ω) Pr(ω|µ, σ)dω. (8)

For the specific example of the Gaussian distribution,

Pr(0|µ, σ; t) = 1
σ
√

2π

∫
cos2

(
ωt

2

)
e−

(ω−µ)2

σ2 dω = 1
2

(
1 + e−2σ2t2 cos(2µt)

)
. (9)

At this point, we have entirely removed ω from the problem, leaving a two-parameter model,
where we wish to estimate the mean and variance of an unknown normal distribution.

As another example, instead of marginalizing against a Gaussian distribution, we consider
the case that the intermediate model parameter ω is drawn from a Lorentz distribution. A
Lorentz distribution is completely determined by its location and scale parameters ω0 and
γ, respectively, and so we use these hyperparameters to derive a new model,

Pr(0|ω0, γ; t) =
∫

cos2(ωt/2) 1
πγ
(

(ω−ω0)2

γ2 + 1
)dω = 1

2
(
1 + e−tγ cos (tω0)

)
. (10)

Note that if we identify γ = T−1
2 , then the Lorentz hyperparameter model is the identical

to that of Equation (7). This illustrates the relationship between decoherence processes and
the lack of knowledge formalized by a hyperparameter model. In a similar fashion, (9) is also
model of decoherence. Due to the t2 dependence of the Gaussian-hyperparameter model,
(9) represents a decoherence process that cannot be written in Lindblad form [32] because
it cannot be drawn from a quantum dynamical semigroup.

5.1 Results for Unknown T2

Here we report on the performance of our algorithm for the comparatively challenging task of
learning Hamiltonian parameters without a precise estimate of T2. These calculations were
performed using the true distributions ω ∼ N (0.5, 0.0025) and 1/T2 ∼ N (0.001, 0.000252),
and with the scale matrix Q = diag(1, 0.0025/0.000252) = diag(1, 100).

The guess heuristic that we focus on chooses times randomly from an exponential dis-
tribution with mean 1 000, corresponding to the mean value of T2 according to the initial
prior. This choice of guess function is motivated by the fact that the most informative
experiments (as measured by Fisher information) tend to occur at t ≈ T2 [31]. A secondary
benefit is that the guess function is certainly not optimal for the problem, and will allow us
to illustrate that a sub–optimal guess function can be used in concert with local optimization
(in our case Newton conjugate gradient optimization (NCG) is used) to find near optimal
experiments given the current state of knowledge about the unknown Hamiltonian.

We examine the variation of the MSE with the number of guesses used in Figure 1. The
figure shows that, in the absence of local optimization of experiment times, the MSE for both

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 113

2 5 10 20 50 100 200
N

1 ´ 10-5

2 ´ 10-5

5 ´ 10-5

1 ´ 10-4

2 ´ 10-4

5 ´ 10-4

0.001

0.002

HΩ
`

- ΩL2
Expected MSE in Ω

2 5 10 20 50 100 200
N

5.0 ´ 10-8

3.0 ´ 10-8

JT` 2
-1

- T2
-1N2

Expected MSE in T2
-1

Offline Online H30 guessesL

2 5 10 20 50 100 200
N

10-6

10-5

10-4

0.001

HΩ
`

- ΩL2
Expected MSE in Ω

Online H1 guess, NCGL Online H30 guesses, NCGL

Figure 1 Benchmarking of the “unknown-T2”model using n = 5 000 particles and random initial
guesses without local optimization. Data indicated dashed lines correspond to trials where a single
initial guess was used for each experiment, while data indicated by solid lines were collected using
30 guesses per experiment. Errors in estimating performance are indicated by red shaded regions
about each curve.

ω and 1/T2 is significantly improved by using an increased number of guesses. In particular,
we find that if 30 guesses are used, then only 50 experiments are required on average to learn
ω within a 0.9% error, even without a well characterized T2. The improvement is much more
substantial for ω than it is for 1/T2 because the contrast on T2 is much less significant.

Figure 1 examines the effect of increasing the number of guesses for strategies that use
NCG. The most significant qualitative difference between the data collected using NCG
and that of Figure 1 is that the MSE for ω shows no evidence of saturating and instead
continues to shrink as the number of experiments are increased (as seen most clearly in
Figure 2). This implies that our randomized guess heuristic is unlikely to randomly guess
very informative experiments after a fixed number of experiments, but the landscape is
sufficiently devoid of local optima that NCG optimization finds informative experiments in
the vicinity of our uninformed guesses. We also observe that NCG does not substantially
improve the MSE if 1 guess is used. This suggests that the landscape is not sufficiently
convex that local optimization about an individual guess is likely to find experiments that
are substantially more informative. We therefore conclude that increasing number of guesses
used and using NCG substantially improves the MSE for ω and has a much more subtle
effect on the knowledge of T2 if local optimization is used.

It is useful to benchmark the performance of our algorithm against the Bayesian Cramer-
Rao bound (BCRB—see appendix), which gives a lower bound on the MSE. Figure 3 provides

TQC’13

114 Robust Online Hamiltonian Learning

2 5 10 20 50 100 200
N

10-6

10-5

10-4

0.001

HΩ
`

- ΩL2
Expected MSE in Ω

2 5 10 20 50 100 200
N

5.0 ´ 10-8

3.0 ´ 10-8

JT` 2
-1

- T2
-1N2

Expected MSE in T2
-1

W�o local optimization With local optimization

Figure 2 Benchmarking of the “unknown-T2”model using n = 5 000 particles and 30 random
initial guesses. Data indicated dashed lines correspond to trials where a each initial guess was
used without local optimization, while data indicated by solid lines were collected using NCG
optimization for each guess. The unoptimized data is averaged over 1,109 trials while the optimized
data is averaged over 930 trials. Errors in estimating performance are indicated by red shaded
regions about each curve.

a comparison of the MSE, the estimate of the MSE given by the variance of the posterior
and the BCRB for ω, T−1

2 and Tr(Σ ·Q). We see that the expected posterior variance is
typically within statistical error of the MSE for all three of these quantities, suggesting that
the posterior variance can be used as a very good estimate of the MSE for this model. We
also note that the MSE is very close to the MSE for the T−1

2 data and Tr(Σ ·Q). The MSE
for ω is within a constant multiple of the BCRB. We do not, in fact, expect that the MSE
in ω should approach the BCRB because the algorithm chooses experiments to optimize
Tr(Σ ·Q) rather than the error for either ω or T−1

2 individually.

5.2 Region Estimation
One of the most substantial contributions of our algorithm is its ability to provide region
estimates for the location of the true Hamiltonian, which allow us to quantify our uncer-
tainty in the true model parameters. We compare the probability mass enclosed by the
covariance region estimator described in Section 4. A simplifying assumption is made in our
analysis: we assume that the posterior distribution is approximately Gaussian. Although
difficult to justify theoretically, we have find for the examples that we consider that the
posterior appears Gaussian locally around our estimate after a sufficiently large number of
experiments. We expect this behavior to be generic, although region estimators such as the
convex hull or the minimum-volume enclosing ellipse may be used even if the posterior is
not approximately normal.

Under the Gaussian model of the posterior distribution, we expect the true model pa-
rameters to be within an ellipse described by the covariance matrix whose volume is then
described by the Z–score used. For example, in the one–dimensional case approximately
95% of the probability mass is located within 2–standard deviations, which corresponds to
Z = 2. We choose Z = 3 standard deviations from the mean for these examples which cor-
respond to probability masses of m̃(Cov(x̂)−1/Z2) ≈ 0.9973 and m̃(Cov(x̂)−1/Z2) ≈ 0.9946
for the one– and two–parameter cases respectively.

We show in Figure 4, and [33], that the approximate probability mass m̃ approaches
the probability mass we would expect for a normal distribution for the known-T2 model in

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 115

2 5 10 20 50 100 200
N

10-7

10-6

10-5

10-4

0.001

HΩ
`

- ΩL2
Expected MSE in Ω

2 5 10 20 50 100 200
N

5.0 ´ 10-8

2.0 ´ 10-8

3.0 ´ 10-8

JT` 2
-1

- T2
-1N2

Expected MSE in T2
-1

E@MSED E@VarD BCRB

2 5 10 20 50 100 200
N

0.0010

0.0050

0.0020

0.0030

0.0015

Expected Quadratic Loss

E@LD E@TrHS × QLD BCRB

Figure 3 The actual and estimated performance, as a function of the number of measurements
N , of the sequential Monte Carlo algorithm for n = 5 000 particles. The model is that of equation
(7) with unknown T2 (which is estimated as Γ = 1/T2 for numerical precision considerations). The
dotted curve is the posterior variance of the particles; dashed is the actual mean squared error
and solid is numerically calculated Bayesian Cramer-Rao lower bound. In the upper subfigures,
the MSE and variances are those of the individual parameters ω and T−1

2 , respectively, while the
lower subfigure shows the actual and estimated quadratic losses scaled using Q = diag(1, σ2

ω/σ
2
T−1

2
),

where σ2
ω and σ2

T−1
2

are the variances in ω and T−1
2 according to the initial prior π.

the limit of large N , providing evidence in favor of our use of the covariance ellipse as a
region estimator on the posterior. In particular, we note that the value of m̃ approaches
0.9973, such that the quality of the Gaussian approximation improves as we collect data.
The transient behavior for small experiment numbers occurs because insufficient experiments
have been considered for the posterior to approach a Gaussian. In this specific example, the
average differences in enclosed probability mass after each experiment are on the order of
0.01%, and thus may not be of practical significance.

5.3 Hyperparameter Region Estimation Performance

Having demonstrated the effectiveness of our region estimation algorithm, it remains to show
that the generalization to hyperparameter regions works as described in Section 4. The
objective here is to analyze the robustness of our algorithm in the presence of fluctuating
“true” parameters of the Hamiltonian. We do so by using the Gaussian hyperparameter
model as discussed in Section 5, then comparing the model parameter region volume and
probability mass for the region estimated from Equation (5) to the volume and probability
mass of the corresponding “true” model parameter region. We benchmark this model by

TQC’13

116 Robust Online Hamiltonian Learning

20 40 60 80 100
N

0.994

0.995

0.996

0.997

0.998

m�
Probability Mass of Region Estimator

20 40 60 80 100
N

10-6

10-5

10-4

0.001

VarHΩ
` L - VarHΩtrueL

Excess Variance

200 guesses, approx_ratio = 0.1

Unoptimized

200 guesses, approx_ratio = 1.0

Normal Distribution Pr. Mass

Figure 4 Benchmarking region estimators for Gaussian hyperparameter model using n = 2 000
particles, ω ∼ N (µ, σ2) where µ ∼ N (0.5, 0.0012) and σ2 ∼ N (0.0025, 0.00252).

choosing “true” hyperparameters µ and σ2 for ω according to the normal distribution

µ, σ2 ∼ N
[
(µµ, µσ2),diag(σ2

µ, σ
2
σ2)
]
. (11)

Recall that the unknown frequency is distributed as ω ∼ N (µ, σ2). In particular, this true
distribution does not admit any correlation between the mean and variance hyperparameters.
We then use the true distribution as our prior distribution.

In Figure 4, we find that the probability mass contained within our estimated region for
the Hamiltonian agrees well with our theoretical expectations. In particular, we assume a
Gaussian posterior and use a Z-score of 3 which implies that we should anticipate that 99.7%
of the probability mass will lie within the region estimation of E[ω̂] ± 3

√
Var(ω̂). We find

very good agreement with this assumption, and find that at worst 99.4% of the probability
mass for the hyperparameters lies within the estimated region. The data also suggests that
these small differences vanish for the optimized data sets, which appear to approach the
ideal enclosed probability mass of 99.7% in the limit of large N .

Hyperparameters are not typically a quantity of interest by themselves. They usually are
of relevance because they parameterize a distribution of the unknown parameter. Following
Equation (6), we calculate Var(ω̂) as Var(ω̂) = Var(µ̂) +E[σ̂2]. We find that, as the number
of experiments grows, our region estimator for ω slightly overestimates the “true” variance
of ω (on average). This bias vanishes as the number of experiments increases. We can
therefore conclude that we can use the method of hyperparameters to robustly estimate the
distribution of an unknown frequency, even in the presence of noise.

5.4 Computational Cost
Another way that we can assess the cost of inferring the Hamiltonian of a system is in terms
of the classical computing time needed to learn the Hamiltonian parameters to within a
fixed error tolerance (as measured by the number of likelihood calls made). Our previous
discussion found that the experimental time (measured by the number of experiments) can
be minimized by choosing measurements that minimize the risk, and showed that increas-
ingly sophisticated heuristics for generating these guesses tended to reduce the experimental
time. This suggests that a trade-off may be present between the experimental time and the
classical processing time needed to learn the parameter. This tradeoff will become increas-
ingly relevant as the size of the quantum system grows, since existing quantum simulation

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 117

10 100 1000 104 105

nlike

nparticles

10-5

10-4

0.001

0.01

EHLL
Loss vs. Likelihood Calls per Particle

10 100 1000 104 105

nlike

nparticles

1 ´ 10-5

5 ´ 10-5

1 ´ 10-4

5 ´ 10-4

0.001

0.005

0.010

Q0.84HLL
Loss vs. Likelihood Calls per Particle

30 guesses, no optimization

1 guess, no optimization

30 guesses, NCG, approx_ratio 0.1

1 guess, NCG, approx_ratio 0.1

30 guesses, NCG, approx_ratio 1.0

1 guess, NCG., approx_ratio 1.0

Figure 5 This figure compares the mean–square error as a function of the computational time for
the known T2 model with T2 = 100, 5 000 particles, approx_ratio = 1 and guessed experimental
times chosen randomly from an exponential distribution with mean T2. The expected loss incurred
by each optimization strategy is shown in the left figure and the figure on the right shows the 84th

percentile Q0.84 of the loss, such that no more than 16% of trials incur loss greater than the shown
percentile.

techniques do not scale efficiently with the number of particles in the system and thus the
cost of performing a likelihood call may asymptotically become much more expensive than
performing an experiment.

If computational time is of primary importance (rather than experimental time), then
the relative merits of the experimental design heuristics changes. In total, our data sets
in Figure 5 required (on average) a number of likelihood calls that fell within the range
[1.05 × 107, 1.5 × 109]. A likelihood call required the evaluation of exp(−t/T2) cos2 (ω

2 t
)

+
(1− exp(−t/T2))/2, which required time on the order of 10−7 seconds on our computers
and lead to total computational times that were on the order of a second to a minute. If the
rate at which experiments can be performed were much faster than 200 Hz then the utility
of our algorithm as a means to speed up data collection may be lost. If the two rates are
approximately comparable, then interesting trade-offs appear between the computational
time needed and the total experimental time.

These trade-offs become apparent by plotting the scaling of the MSE as a function of the
computational time for the randomized guess heuristic in Figure 5. The first feature that is
obvious from the plot is that the strategies which yielded the lowest MSE per experiment
tend to yield the highest MSE per likelihood call; although several of these strategies cause
the expected loss (mean–square error) to saturate after a finite number of experiments.
In particular, this causes the strategy with 30 guesses and no optimization as well as the
strategy with 30 guesses, NCG optimization and approx_ratio = 0.1 to intersect the curve
for the cases with NCG optimization and approx_ratio = 1. Here the approximation ratio
is the ratio of the particles that are used in the updating (see Algorithm 3). On the surface,
this seems to indicate that the more expensive heuristics may have an advantage if small
loss is desired; but this is misleading and to get a complete picture we need to look at more
than just the expected performance of the strategies.

We can get a better understanding of this saturation by looking at the plot of the 84th

percentile of the loss in Figure 5, which shows that all of these strategies continue to provide
improved estimates of ω even into this regime of saturation for at least 84% of the trials
considered. This shows that there were a few trials where very poor guesses were chosen and
the algorithm became stuck at a large MSE. The data also suggests that the use of NCG and

TQC’13

118 Robust Online Hamiltonian Learning

a large value of the approximation ratio can mitigate these problems, causing the learning
algorithm to become more stable at the price of requiring more computational time.

6 Multi–Qubit Test Case

We will now focus on an example that shows the viability of our algorithm in cases where
the Hamiltonian acts on many qubits rather than just one. The model that we consider is
the Ising Model with no external magnetic field with a complete graph of interactions on n
qubits:

H =
∑
i>j

xi,jσ
z
i σ

z
j , (12)

where xi,j are real valued coefficients. In these examples, we choose these coefficients ran-
domly from the interval [0, 1] (the absence of frustrations does not affect the difficulty of
the learning problem). The goal of the learning problem is to learn each xi,j . We represent
these parameters for the Hamiltonian Hk using the vector xk.

In direct analogy to the single qubit examples, an experiment involves setting the initial
state to be |+〉⊗n, evolving the state under the Hamiltonian in (12) for some evolution time t
and finally applying the Hadamard transform to each qubit and measuring the result in the
computational basis. The evolution time is the only control parameter in these experiments.

We also use a different guess heuristic to choose t for this problem than the exponential
random guess heuristic that was used in previous experiments since, most notably, we are
not considering decoherence processes. We choose the times by drawing two Hamiltonians
Hj and Hj′ from the current prior Pr(Hk|dn, . . . ; cn, . . .) and then choose t = 1/|xj −xj′ |2,
rather than choosing the times randomly and using NCG to find a locally optimal experiment
near that guess. We call this strategy the “particle guess heuristic.” Although it may
not seem it, this strategy is adaptive. In particular, the particle guess heuristic will tend
to choose experiments that have short evolution times when the posterior distribution is
broad, and longer evolution times when the distribution is narrow. Long evolution times are
needed to distinguish dynamics of nearby Hamiltonians, thus the heuristic adaptively chooses
experiments that will be informative based on the current uncertainty in the unknown
parameters. We pick this strategy because it outperforms the exponential guessing strategy
for such problems, especially in absentia of local optimization.

We avoid local optimization in these numerical experiments because the effects of incor-
porating local optimization have been well discussed in previous examples and the improve-
ments brought about by using local optimization in these cases is qualitatively similar to the
single qubit case. Furthermore, the cost of computing the likelihood in these cases is sub-
stantially higher so including local optimization would only restrict the range of numerical
examples that we could provide.

We examine the scaling of the quadratic loss that occurs when using SMC to learn
Hamiltonian parameters for (12), using Q = 1, in Figure 6. It is clear that our algorithm is
capable of learning parameters of many–qubit Hamiltonians. The scaling of the quadratic
loss is, similar to the single qubit case, exponential in the number of experiments taken. The
slower rate of learning for the n = 5 and n = 6 cases is due largely to the fact that these cases
have 10 and 15 unknown parameters that must be learned, in contrast to the 6 that must be
learned in the n = 4 case. This shows that our algorithm is capable of learning Hamiltonian
parameters in not just single qubit cases, but also in multi–parameter estimation problems
that are relevant in real world applications such as characterizing superconducting quantum
devices or certifying an analog quantum simulator.

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 119

20 40 60 80 100 120 140 160 180 200
10−6

10−4

10−2

100

Experiment Number

Q
u
a
d
ra
ti
c
L
o
ss

n=4
n=5
n=6

Student Version of MATLAB

Figure 6 This figure compares the quadratic loss as a function of the computational time for
the Ising model with 20 000 particles, approx_ratio = 1 and guessed experimental times chosen
using the particle guess heuristic. The dashed lines represent the 25th and 75th percentile of the
quadratic loss, whereas the solid lines represent the median.

7 Conclusions

Our work provides a simple algorithm that applies Bayesian inference to learn a Hamiltonian
in an online fashion; that is to say, that our algorithm learns the Hamiltonian parameters as
the experiment proceeds rather than collecting data and inferring the Hamiltonian through
post–processing. This eliminates the need to store and process gigabytes of data that are
recovered from even relatively short experiments. Our work has several advantages over
existing approaches to learning Hamiltonian parameters. First, it can be used to estimate
the optimal parameterization of the dynamics of an arbitrary quantum system within a
space of model Hamiltonians. Second, it can be used to provide a region estimatate of the
Hamiltonian parameters. The importance of this is obvious: it allows us to not only learn
the unknown parameters but also quantify our uncertainty in them. Third, our analysis of
the algorithm shows a clear trade off between the experimental time and the computational
time needed to parameterize the Hamiltonian.

We note a natural extension of our algorithm to include classical simulators which do not
deterministically compute the likelihood function but generate random samples according
to it [34]. The distinction between strong and weak simulation has been a topic of recent
interest in computational complexity [35, 36]. The present work and that of [34] add to the
discussion of this distinction by clarifying the relationship between simulating a physical
model classically and estimating the parameters in it.

An extension of our work would be to consider more advanced optimization heuristics
than conjugate gradient searches (such as particle swarm optimization algorithms). Simi-
larly, more advanced resampling techniques may lead to substantial reductions in the number
of particles which in turn would reduce the computational cost of the algorithm. Finally,
estimates of how the number of experiments required to achieve a specific mean–square er-
ror scales with the number of unknown parameters would be an important extension of this
work since it would assess the viability of these techniques for controlling and characterizing
larger quantum systems.

Acknowledgements. This work was financially supported by the Canadian government
through NSERC and CERC and by the United States government through DARPA. NW
would like to acknowledge funding from USARO-DTO.

TQC’13

120 Robust Online Hamiltonian Learning

References
1 B. P. Lanyon, C. Hempel, D. Nigg, M. M¨ uller, R. Gerritsma, F. Zähringer, P. Schindler,

J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, and C. F.
Roos. Universal digital quantum simulation with trapped ions. Science 334 57, 2011.

2 R. Gerritsma, B. P. Lanyon, G. Kirchmair, F. Zähringer, C. Hempel, J. Casanova, J. J.
Garcia-Ripoll, E. Solano, R. Blatt, and C. F. Roos. Quantum simulation of the klein
paradox with trapped ions. Physical Review Letters 106 060503, 2011.

3 K. Kim, M.-S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G.-D. Lin,
L.-M. Duan, and C. Monroe. Quantum simulation of frustrated Ising spins with trapped
ions. Nature, 465 590, 2010.

4 Matteo Paris and Jaroslav Rehacek, editors. Quantum State Estimation, volume 649 of
Lecture Notes in Physics. Springer, 2004.

5 Ariel Bendersky, Fernando Pastawski, and Juan Pablo Paz. Selective and efficient estima-
tion of parameters for quantum process tomography. Physical Review Letters 100 190403,
2008.

6 Ariel Bendersky, Fernando Pastawski, and Juan Pablo Paz. Selective and efficient quantum
process tomography. Physical Review A 80 032116, 2009.

7 M. Mohseni and A. T. Rezakhani. Equation of motion for the process matrix: Hamiltonian
identification and dynamical control of open quantum systems. Physical Review A 80
010101, 2009.

8 M P A Branderhorst, J Nunn, I A Walmsley, and R L Kosut. Simplified quantum process
tomography. New Journal of Physics 11 115010, 2009.

9 Steven T. Flammia and Yi K. Liu. Direct Fidelity Estimation from Few Pauli Measure-
ments. Physical Review Letters 106 230501, 2011.

10 Marcus P. da Silva, Olivier L. Cardinal, and David Poulin. Practical Characterization of
Quantum Devices without Tomography. Physical Review Letters 107 210404, 2011.

11 Arnaud Doucet and Adam M. Johansen. A Tutorial on Particle Filtering and Smoothing:
Fifteen Years Later. In The Oxford Handbook of Nonlinear Filtering. Oxford University
Press, 2009.

12 Thomas J. Loredo. Bayesian Adaptive Exploration. AIP Conference Proceedings 707 330,
2004.

13 Hendrik Kuck, Nando de Freitas, and Arnaud Doucet. SMC Samplers for Bayesian Optimal
Nonlinear Design. In Nonlinear Statistical Signal Processing Workshop. IEEE, 2006.

14 Bruno Scarpa and David B. Dunson. Bayesian methods for searching for optimal rules for
timing intercourse to achieve pregnancy. Statistics in Medicine 26 1920, 2007.

15 D. R. Cavagnaro, M. A. Pitt, and J. I. Myung. Adaptive Design Optimization in Experi-
ments with People. Advances in Neural Information Processing Systems 22 234, 2010.

16 N. Kantas, A. Lecchini-Visintini, and J. M. Maciejowski. Simulation-based Bayesian op-
timal design of aircraft trajectories for air traffic management. International Journal of
Adaptive Control and Signal Processing 24 882, 2010.

17 Xun Huan and Youssef M. Marzouk. Simulation-based optimal Bayesian experimental
design for nonlinear systems. Journal of Computational Physics 232 288, 2013.

18 F. Huszár and N. M. T. Houlsby. Adaptive Bayesian quantum tomography. Physical Review
A 85 052120, 2012.

19 Rocco A. Servedio and Steven J. Gortler. Equivalences and Separations Between Quantum
and Classical Learnability. SIAM Journal on Computing 33 1067, 2004.

20 Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. Machine Learning in a Quantum
World Advances in Artificial Intelligence. volume 4013 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 2006.

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 121

21 Scott Aaronson. The learnability of quantum states. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science, 463 3089, 2007.

22 Alexander Hentschel and Barry C. Sanders. Machine Learning for Precise Quantum Mea-
surement. Physical Review Letters, 104 063603, 2010.

23 Kristen L. Pudenz and Daniel A. Lidar. Quantum adiabatic machine learning. Quantum
Information Processing 12 2027, 2013.

24 Alexander Hentschel and Barry C. Sanders. Efficient algorithm for optimizing adaptive
quantum metrology processes. Physical Review Letters, 107 233601, 2011.

25 Alexandr Sergeevich and Stephen D. Bartlett. Optimizing qubit Hamiltonian parameter
estimation algorithms using PSO. Proceedings of 2012 IEEE Conference on Evolutionary
Computation 1, 2012.

26 J. Liu and M. West. Combined parameter and state estimation in simulation-based filtering.
Springer-Verlag, 2000.

27 Michael J. Todd and E. Alper Yıldırım. On Khachiyan’s algorithm for the computation of
minimum-volume enclosing ellipsoids. Discrete Applied Mathematics 155 1731, 2007.

28 C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algorithm
for convex hulls. ACM Transactions on Mathematical Software 22 469, 1996.

29 Alexandr Sergeevich, Anushya Chandran, Joshua Combes, Stephen Bartlett, and Howard
Wiseman. Characterization of a qubit Hamiltonian using adaptive measurements in a fixed
basis. Physical Review A 84 052315, 2011.

30 Christopher Ferrie, Christopher E. Granade, and D. G. Cory. Adaptive hamiltonian esti-
mation using bayesian experimental design. AIP Conference Proceedings 1443 165, 2012.

31 Christopher Ferrie, Christopher Granade, and D. Cory. How to best sample a periodic
probability distribution, or on the accuracy of Hamiltonian finding strategies. Quantum
Information Processing 12 611, 2013.

32 G. Lindblad. On the generators of quantum dynamical semigroups. Communications in
Mathematical Physics 48 119, 1976.

33 Christopher E Granade, Christopher Ferrie, Nathan Wiebe, and D G Cory. Robust online
Hamiltonian learning. New Journal of Physics 14 103013, 2012.

34 Christopher Ferrie and Christopher E Granade. Likelihood-free quantum inference: tomog-
raphy without the born rule, URL http://arxiv.org/abs/1304.5828, 2012.

35 Scott Aaronson and Alex Arkhipov. The Computational Complexity of Linear Optics, URL
http://arxiv.org/abs/1011.3245, 2010.

36 M. Van den Nest. Simulating quantum computers with probabilistic methods. Quantum
Information & Computation 11 784, 2011.

37 Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python, 2001–.

38 E. L. Lehmann and George Casella. Theory of Point Estimation. Springer, 2nd edition,
1998.

39 James O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer, 2nd edition,
1985.

40 Robin Blume-Kohout and Patrick Hayden. Accurate quantum state estimation via “Keep-
ing the experimentalist honest”, URL http://arxiv.org/abs/quant-ph/0603116, 2006.

41 Richard D. Gill and Boris Y. Levit. Applications of the van Trees Inequality: A Bayesian
Cramér-Rao Bound. Bernoulli 1 59, 1995.

42 P. Tichavsky, C. H. Muravchik, and A. Nehorai. Posterior Cramer-Rao bounds for discrete-
time nonlinear filtering. IEEE Transactions on Signal Processing 46 1386, 1998.

TQC’13

122 Robust Online Hamiltonian Learning

A Utility Functions and the Cramer-Rao Lower Bound

Given a set of observed outcomes, the choice of subsequent experimental parameters that
informs us most about the model parameters is given by the utility function. We test our
method with a utility function that minimizes the expected variance in Pr(x|dN+1, D; cN+1, C).
We show that this choice is optimal for minimizing the the mean squared error of the pro-
tocol.

An estimator is a function x̂ that takes a set of observed data D collected from a set
of experiments with controls C and produces an estimate for the unknown parameters x.
Here, we evaluate the quality of an estimator x̂ by using a generalization of the squared
error loss called the quadratic loss as our figure of merit. The quadratic loss is defined for
a vector of parameters x, data D and experiment designs C, as

LQ(x, x̂(D,C)) = (x− x̂(D,C))TQ (x− x̂(D,C)) , (13)

where Q is a positive definite matrix on the space of unknown parameters that defines the
relative scale between the various parameters of interest. The quadratic loss function is
useful to us in that it is computationally inexpensive to calculate and may be analyzed
by well-known statistical techniques. In particular, the Cramer-Rao bound can be used to
lower-bound the mean quadratic loss incurred by an estimator, under the hypothesis of a
given true model x [38].

Following a decision theoretic methodology [39], the risk of an estimator given a set of
experiment designs C is its expected performance over all possible outcomes D with respect
to the loss function:

R(x, x̂; C) = ED|x;C [L(x, x̂(D;C))].

The Bayes risk is the average of this quantity with respect to a prior distribution on x
(denoted π) and is given explicitly by

r(π;C) = Ex[R(x, x̂; C)] =
∫
π(x)R(x, x̂; C)dx.

where x̂ is assumed to be a Bayes estimator, which means it is the one which minimizes the
Bayes risk. When the loss function is taken to be squared error (in the single parameter
case) or the quadratic loss (in the multi-parameter case), the Bayes risk is more familiarly
known as mean squared error (MSE).

For quadratic loss (and many others [40]) the unique Bayes estimator is the mean of
the posterior distribution x̂(D;C) = Ex|D;C [x]. Minimizing the Bayes risk of a choice of
parameters is equivalent to maximizing the negative Bayes risk for that set; therefore, it is
reasonable to choose the negative Bayes risk as our utility function. It also has theoretical
benefits in that it is easy to compare the performance of algorithms that take U(cN+1) =
−r(π; cN+1, C).

The question of how well can we estimator x becomes the question of how low can we
make the Bayes risk r(π;C). We lower bound the achievable risk via the Bayesian variant
of the Cramer-Rao bound [41]. Both require finding the Fisher information:

I(x;C) = ED|x;C

[
∇x log (Pr(D|x;C)) ·∇T

x log (Pr(D|x;C))
]
.

The Fisher information does not depend at all on the prior distribution, and thus is calculated
in the same way regardless of how many experiments have already been performed.

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 123

The standard Cramer-Rao bound is then given by Cov(x̂) ≥ I(x;C)−1, where X ≥ Y
means that X − Y is positive semi-definite. If we choose the matrix Q associated with the
quadratic loss to be Q = 1, then R(x, x̂;C) = Tr(Cov(x̂)) ≥ Tr(I(x;C)−1). Clearly, this
statement of the multivariate Cramer-Rao bound assumes that I is non-singular. Singular
Fisher information matrices arise when there are experiments that provide no information
about at least one of the experimental parameters. Unfortunately, that assumption is not
met in general. We avoid this problem by considering the Bayesian information matrix
J(π;C) = Ex[I(x;C)]. Then, the Bayesian Cramer-Rao bound (BCRB) is given by [41]

r(π;C) ≥ J(π;C)−1.

Lower bounds can be found for specific values of C using numerical integration. In practice,
we calculate the BCRB using an iterative method, similar to [42].

TQC’13

124 Robust Online Hamiltonian Learning

B Pseudo–Code for Algorithms

Algorithm 1 Sequential Monte Carlo update algorithm.
Input: Particle weights wi(D), i ∈ {1, . . . , n}, Particle locations xi, i ∈ {1, . . . , n}, New
datum dj+1, obtained from an experiment with control cj+1.

Output: Updated weights wi(D ∪ dj+1).
function Update({wi(D)}, {xi}, dj+1, cj+1)

for i ∈ 1→ n do
w̃i ← wi(D) Pr(dj+1|xi, cj+1)

end for
return {w̃j/

∑
i w̃i} . We must normalize the updated weights before returning.

end function

Algorithm 2 Sequential Monte Carlo resampling algorithm.
Input: Particle weights wi, i ∈ {1, . . . , n}, Particle locations xi, i ∈ {1, . . . , n}, Resampling
parameter a ∈ [0, 1].

Output: Updated weights w′i and locations x′i.
function Resample({wi}, {xi}, a)
µ← Mean({wi}, {xi}), Σ← h2 Cov({wi}, {xi})
h←

√
1− a2

for i ∈ 1→ n do
draw j with probability wj . Choose a particle j to perturb.
µi ← axj + (1− a)µ . Find the mean for the new particle location.
draw x′i from N (µi,Σ) . Draw a perturbed particle location.
w′i ← 1/n . Reset the weights to uniform.

end for
return {w′i}, {x′i}

end function

Algorithm 3 Reduced particle approximation for Sequential Monte Carlo utility functions.
Input: Particle weights wi, i ∈ {1, . . . , n}, Particle locations xi, i ∈ {1, . . . , n}, Ratio

approx_ratio of the particles to keep in the reduced approximation.
Output: Reduced sets of particle weights {w̃i} and locations {x̃i}.

function Reapprox({wi}, {xi}, approx_ratio)
ñ← bn · approx_ratioc
draw π uniformly at random from Sym(n), the symmetric group acting on n elements
{w̃i} ← {wπ(i)} . Permute the elements to avoid patterns when sorting the weights.
{x̃i} ← {xπ(i)}
{sk} ← Sort({w̃i}) . Get a list of indices si such that w̃si ≥ w̃sj for all i, j.
return {w̃i} ← {w̃si : i ∈ 1→ ñ}, {x̃i} ← {x̃si : i ∈ 1→ ñ}

end function

C. Granade, C. Ferrie, N. Wiebe, and D. G. Cory 125

Algorithm 4 Complete adaptive Bayesian experiment design algorithm, using sequential
Monte Carlo approximations.
Input: A number of particles n to be used, A prior distribution π over models, A num-
ber of experiments N to perform, A resampling parameter a ∈ [0, 1], A threshold
resample_threshold ∈ [0, 1] specifying how often to resample, An approximation ratio
approx_ratio, An local optimization algorithm LocalOptimize, A heuristic GuessEx-
periment for choosing experiment controls, and a number nguesses of potential experi-
ments to consider in each iteration.

Output: An estimate x̂ of the true model x0.

function EstimateAdaptive(n, π, N , a, resample_threshold, approx_ratio, Opti-
mize, nguesses, GuessExperiment)

wi ← 1/n . Start by initializing the SMC variables.
draw each xi independently from π

for iexp ∈ 1→ N do . We now iterate through each experiment.
. If we are using a reduced particle set, populate that first.
if approx_ratio 6= 1 then
{w̃i}, {x̃i} ← Reapprox({wi}, {xi}, approx_ratio)

else
{w̃i}, {x̃i} ← {wi}, {xi}

end if

. Heuristicly choose potential experiments, and optimize each independently.
for iguess ∈ 1→ nguesses do

ciguess ← GuessExperiment(iexp)
ĉiguess , Uiguess ← LocalOptimize(Utility, ciguess , {w̃i}, {x̃i})

end for

ibest ← argmaxiguess Uiguess . Pick the controls that maximize the optimized utility.
ĉ← ĉibest

diexp ← the result of performing Ĉ . Perform the best experiment.
{wi}, {xi} ← Update({wi}, {xi}, D, C) . Find the new posterior distribution.

if
∑
i w

2
i < N · resample_threshold then . Resample if ness is too small.

{wi}, {xi} ← Resample({wi}, {xi}, a)
end if

end for

. After all experiments have been performed, return the mean as an estimate.
return x̂←Mean({wi}, {xi})

end function

TQC’13

	Introduction
	Experimental Design Formalism
	Sequential Monte Carlo Algorithm
	Region and Hyperparameter Estimation
	Single-Qubit Test Case
	Results for Unknown T2
	Region Estimation
	Hyperparameter Region Estimation Performance
	Computational Cost

	Multi–Qubit Test Case
	Conclusions
	Utility Functions and the Cramer-Rao Lower Bound
	Pseudo–Code for Algorithms

