148 research outputs found

    Tyrphostins that suppress the growth of human papilloma virus 16‐immortalized human keratinocytes

    Get PDF
    ABSTRACT Human papilloma virus 16 (HPV16) is considered to be the causative agent for cervical cancer, which ranks second to breast cancer in women's malignancies. In an attempt to develop drugs that inhibit the malignant transformation of HPV16-immortalized epithelial cells, we examined the effect of tyrphostins on such cells. We examined the effect of tyrphostins from four different families on the growth of HPV16-immortalized human keratinocytes (HF-1) cells. We found that they alter their cell cycle distribution, their morphology, and induce cell death by apoptosis. The effects of tyrphostins on HF-1 cells are different from their effects on normal keratinocytes. Growth suppression by AG555 and AG1478 is accompanied by 30% apoptosis in HF-1 cells, but this is not observed in normal keratinocytes. Tyrphostin treatment produces distinctive morphological changes in HF-1 cells and in normal keratinocytes; however, the culture organization of normal keratinocytes is less disrupted. These differential effects of the tyrphostins on HPV16-immortalized keratinocytes compared with their effects on normal keratinocytes suggests that these compounds are suitable candidates for the treatment of papilloma. Previous and present results indicate that group 1 tyrphostins, which inhibit Cdk2 activation, and group 2 tyrphostins, represented by AG1478, a potent epidermal growth factor receptor kinase inhibitor, induce cell cycle arrest; and, in the case of HF-1 cells, apoptosis and differentiation. Cells accumulate in the G 1 phase of the cell cycle at the expense of S and G 2 ϩ M. These compounds block the growth of normal keratinocytes without inducing apoptosis or differentiation, causing them to accumulate in G 1 . AG17, which belongs to group 4, exerts its antiproliferative effect mainly by increasing the fractions of cells in G 1 with a concomitant decrease in the fraction of cells in S and G 2 ϩ M

    Structure and magnetism in the bond-frustrated spinel ZnCr2Se4ZnCr_2Se_4

    Get PDF
    The crystal and magnetic structures of stoichiometric ZnCr2Se4ZnCr_2Se_4 have been investigated using synchrotron x-ray and neutron powder diffraction, muon spin relaxation (μSRμSR), and inelastic neutron scattering. Synchrotron x-ray diffraction shows a spin-lattice distortion from the cubic Fd3ˉmFd\bar3m spinel to a tetragonal I41/amdI4_1/amd lattice below TN=21KT_N = 21 K, where powder neutron diffraction confirms the formation of a helical magnetic structure with magnetic moment of 3.04(3)μB3.04(3) μ_B at 1.5 K, close to that expected for high-spin Cr3+Cr^{3+}. μSRμSR measurements show prominent local spin correlations that are established at temperatures considerably higher (100 μs^{-1}\)) muon relaxation rates are suggestive of rapid site hopping of the muons in static field. Inelastic neutron scattering measurements show a gapless mode at an incommensurate propagation vector of k = [000.4648(2)] in the low-temperature magnetic ordered phase that extends to 0.8 meV. The dispersion is modeled by a two-parameter Hamiltonian, containing ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions with a Jnnn/Jnn=0.337J_{nnn}/J_{nn} = -0.337

    A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    Get PDF
    The entire substrate translocation pathway in the human GABA transporter (GAT-1) was explored for the endogenous substrate GABA and the anti-convulsive drug tiagabine. Following a steered molecular dynamics (SMD) approach, in which a harmonic restraining potential is applied to the ligand, dissociation and re-association of ligands were simulated revealing events leading to substrate (GABA) translocation and inhibitor (tiagabine) mechanism of action. We succeeded in turning the transporter from the outward facing occluded to the open-to-out conformation, and also to reorient the transporter to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues in the extracellular vestibule including two lysines (K76 (TM1) and K448 (TM10)) and a TM6-triad (D281, E283, and D287) in attracting and relocating substrates towards the secondary/interim substrate-binding site (S2). Likewise, E101 is highlighted as essential for the relocation of the substrate from the primary substrate-binding site (S1) towards the cytoplasm

    Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study

    Get PDF
    BACKGROUND: Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid β (Aβ) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. METHODS: We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aβ40, Aβ42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. FINDINGS: In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aβ42 (β=–4·28 × 10^{–2} [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (β=–5·51 × 10^{–3} [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aβ42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=–0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aβ42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). INTERPRETATION: Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aβ aggregation and further support the role of TREM2 on Aβ plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aβ deposition, Aβ-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing

    CSF progranulin increases in the course of Alzheimer's disease and is associated with sTREM2, neurodegeneration and cognitive decline

    Get PDF
    Progranulin (PGRN) is predominantly expressed by microglia in the brain, and genetic and experimental evidence suggests a critical role in Alzheimer's disease (AD). We asked whether PGRN expression is changed in a disease severity-specific manner in AD We measured PGRN in cerebrospinal fluid (CSF) in two of the best-characterized AD patient cohorts, namely the Dominant Inherited Alzheimer's Disease Network (DIAN) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). In carriers of AD causing dominant mutations, cross-sectionally assessed CSF PGRN increased over the course of the disease and significantly differed from non-carriers 10 years before the expected symptom onset. In late-onset AD, higher CSF PGRN was associated with more advanced disease stages and cognitive impairment. Higher CSF PGRN was associated with higher CSF soluble TREM2 (triggering receptor expressed on myeloid cells 2) only when there was underlying pathology, but not in controls. In conclusion, we demonstrate that, although CSF PGRN is not a diagnostic biomarker for AD, it may together with sTREM2 reflect microglial activation during the disease

    Aboriginal Health Worker perceptions of oral health: a qualitative study in Perth, Western Australia

    Get PDF
    Background: Improving oral health for Aboriginal Australians has been slow. Despite dental disease being largely preventable, Aboriginal Australians have worse periodontal disease, more decayed teeth and untreated dental caries than other Australians. Reasons for this are complex and risk factors include broader social and historic determinants such as marginalisation and discrimination that impact on Aboriginal people making optimum choices about oral health. This paper presents findings from a qualitative study conducted in the Perth metropolitan area investigating Aboriginal Health Workers’ (AHWs) perceptions of barriers and enablers to oral health for Aboriginal people. Methods: Following extensive consultation with Aboriginal stakeholders, researchers conducted semi-structured interviews and focus groups across 13 sites to investigate AHWs’ perceptions of barriers and enablers to oral health based on professional and personal experience. Responses from 35 AHWs were analysed independently by two researchers to identify themes that they compared, discussed, revised and organised under key themes. These were summarised and interrogated for similarities and differences with evidence in the literature. Results: Key findings indicated that broader structural and social factors informed oral health choices. Perceptions of barriers included cost of services and healthy diets on limited budgets, attending services for pain not prevention, insufficient education about oral health and preventing disease, public dental services not meeting demand, and blame and discrimination from some health providers. Suggested improvements included oral health education, delivering flexible services respectful of Aboriginal people, oral health services for 0–4 year olds and role modelling of oral health across generations. Conclusion: Reviewing current models of oral health education and service delivery is needed to reduce oral health disparities between Aboriginal and non-Aboriginal Australians. Shifting the discourse from blaming Aboriginal people for their poor oral health to addressing structural factors impacting on optimum oral health choices is important. This includes Aboriginal and non-Aboriginal stakeholders working together to develop and implement policies and practices that are respectful, well-resourced and improve oral health outcomes

    Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit

    Get PDF
    Background: Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. Methods: We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using 14C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to 14C-sucrose and radioactive albumin. Results: In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with 14C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and 14C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. Conclusions: The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB

    Mechanisms of Granulin Deficiency: Lessons from Cellular and Animal Models

    Get PDF
    corecore