22 research outputs found

    Predicting the Potential Worldwide Distribution of the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using Ecological Niche Modeling

    Get PDF
    This is the publisher's version, also available electronically from http://www.bioone.org/doi/abs/10.1653/024.095.0317.The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), ranks among the most important pests of various palm species. The pest originates from South and Southeast Asia, but has expanded its range dramatically since the 1980s. We used ecological niche modeling (ENM) approaches to explore its likely geographic potential. Two techniques, the Genetic Algorithm for Rule-set Prediction (GARP) and a maximum entropy approach (MaxEnt), were used. However, MaxEnt provided more significant results, with all 5 random replicate subsamples having P < 0.002 while GARP models failed to achieve statistical significance in 3 of 5 cases, in which predictions achieved probabilities of 0.07 < P < 0.10. The MaxEnt models predicted successfully the known distribution, including the single North American occurrence point of Laguna Beach, California, and various areas where the pest has been reported in North Africa, southern Europe, Middle East and South and Southeastern Asia. In addition, areas where the pest has not been yet reported were found to be suitable for invasion by RPW in sub-Saharan Africa, southern, central and northern America, Asia, Europe, and Oceania. Highly suitable areas in the United States of America were limited mostly to coastal California and southern Florida, while all Caribbean islands were found highly suitable for establishment and spread of the pest

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems

    Get PDF
    New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous WIA in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little, while not much new information has been gathered on soil organisms. The impact on marine coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal classneonicotinoids and fipronil. , withContinued large scale – mostly prophylactic – use of these persistent organochlorine pesticides has the potential to greatly decreasecompletely eliminate populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates, and their deleterious impacts on growth, reproduction and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015)
    corecore