250 research outputs found

    Electricity consumption forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    Universiti Tun Hussein Onn Malaysia (UTHM) is a developing Malaysian Technical University. There is a great development of UTHM since its formation in 1993. Therefore, it is crucial to have accurate future electricity consumption forecasting for its future energy management and saving. Even though there are previous works of electricity consumption forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS), but most of their data are multivariate data. In this study, we have only univariate data of UTHM electricity consumption from January 2009 to December 2018 and wish to forecast 2019 consumption. The univariate data was converted to multivariate and ANFIS was chosen as it carries both advantages of Artificial Neural Network (ANN) and Fuzzy Inference System (FIS). ANFIS yields the MAPE between actual and predicted electricity consumption of 0.4002% which is relatively low if compared to previous works of UTHM electricity forecasting using time series model (11.14%), and first-order fuzzy time series (5.74%), and multiple linear regression (10.62%)

    A chamber experiment for the feasibility study of an artificial plasma reflector for OTH radar applications

    Get PDF
    The feasibility of using two intersecting beams for plasma generation in the upper atmosphere as an over-the-horizon radar reflector was investigated. A cube was filled with dry air to a pressure corresponding to the simulated altitude, and two components of a split microwave beam were fed into the cube at right angles. Plasma layers were generated where the two beams intersected. Three critical issues were addressed: (1) reflectivity of the generated plasma layers; (2) propagation of high power microwave pulses; and (3) lifetime of the plasma

    The feasibility of wind and solar energy application for oil and gas offshore platform

    Get PDF
    Renewable energy is an energy which is freely available in nature such as winds and solar energy. It plays a critical role in greening the energy sector as these sources of energy produce little or no pollution to environment. This paper will focus on capability of renewable energy (wind and solar) in generating power for offshore application. Data of wind speeds and solar irradiation that are available around SHELL Sabah Water Platform for every 10 minutes, 24 hours a day, for a period of one year are provided by SHELL Sarawak Sdn. Bhd. The suitable wind turbine and photovoltaic panel that are able to give a high output and higher reliability during operation period are selected by using the tabulated data. The highest power output generated using single wind energy application is equal to 492 kW while for solar energy application is equal to 20 kW. Using the calculated data, the feasibility of renewable energy is then determined based on the platform energy demand

    Wind-induced evaporative cooling passive system for tropical hot and humid climate

    Get PDF
    Over the years, the desire to have better thermal comfort in terms of living has been extensively discussed and is in high demand, especially in metropolitan cities. Alongside the desired outcomes, air conditioning facilities have been implemented, but they also bring negative consequences, such as a high energy bill and multi-dimensional environmental impacts. To counter these problems, a hybrid technique combining the evaporative cooling technique with a venturi-shaped natural ventilation tower is proposed. Evaporative cooling takes advantage of cooling in response to the wind blowing through a layer of wetted surface that is built with permeable materials. Combining with the specially designed venturi-shaped natural ventilation tower to improve the volume intake of wind externally, this system is aimed to reduce temperature and achieve thermal comfort by cooling down the air with circulation in a continuous accumulative mode. To gauge the efficiency and effectiveness of this hybrid technique, an evaporative system known as the wind-induced evaporative cooling (WIEC) system is directly fed into a testing chamber (installed with sensors) fabricated with a scale of 1:6. The system was tested in a hot and humid climate with a temperature range of 27Β°C–34Β°C. The finding shows that our system is able to reduce temperatures up to 3.873Β°C with an output cooling capacity of 9Β W–476.3Β W, which shows the feasibility of this study

    Artificial Immune Algorithm Based Gravimetric Fluid Dispensing Machine

    Get PDF
    One of the most prominent methods used in handling the end process for materials-mixing is by having a dispensing system. An effective dispensing method using Pulse Width Modulation (PWM) at the end of the dispensing sequence with Artificial Immune System (AIS) automatic dispensing parameter fine tuning capability is proposed by optimizing the components of Dispensing Time and Stopping Time Delay to obtain constant and accurate reading from the precision balance scale. Based on the new dispensing sequence, experimental tests had been carried out using different materials with varying viscosities. The results denote that the combination of both PWM and AIS techniques would minimize the error rate for overshooting while exhibiting better accuracy. These are important in order to overcome the limitations of the conventional volumetric dispensing and manual parameter tuning presently applied in the dispensing system used in the coatings industry

    Optical Propagation and Communication

    Get PDF
    Contains research summary and reports on four research projects.Maryland Procurement Office (Contract MDA 904-87-C-4044)National Science Foundation (Grant ECS 87-18970)U.S. Army Research Office (Contract DAAL03-87-K-0117)U.S. Navy - Office of Naval Research (Contract N0001 4-80-C-0941)U.S. Air Force - Office of Scientific Research (Contract F49620-87-C-0043

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and reports on six research projects.National Science Foundation (Grant ECS 85-09143)Maryland Procurement Office (Contract MDA 904-84-C-6037)Maryland Procurement Office (Contract MDA 904-87-C-4044)National Science Foundation (Grant ECS 84-15580)National Science Foundation (Grant INT-86-14329)U.S. Navy - Office of Naval Research (Contract N00014-87-G-0198)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Army Research Office - Durham (Contract DAALO3-87-K-0117)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941_U.S. Air Force - Office of Scientific Research (Contract F49620-87-C-0043

    Chemoattractant Receptor Homologous to the T Helper 2 Cell (CRTH2) Is Not Expressed in Human Amniocytes and Myocytes

    Get PDF
    BACKGROUND: 15-deoxy-Ξ” 12,14- Prostaglandin J2 (15dPGJ2) inhibits Nuclear factor kappa B (NF-ΞΊB) in human myocytes and amniocytes and delays inflammation induced preterm labour in the mouse. 15dPGJ2 is a ligand for the Chemoattractant Receptor Homologous to the T helper 2 cell (CRTH2), a G protein-coupled receptor, present on a subset of T helper 2 (Th2) cells, eosinophils and basophils. It is the second receptor for Prostaglandin D2, whose activation leads to chemotaxis and the production of Th2-type interleukins. The cellular distribution of CRTH2 in non-immune cells has not been extensively researched, and its identification at the protein level has been limited by the lack of specific antibodies. In this study we explored the possibility that CRTH2 plays a role in 15dPGJ2-mediated inhibition of NF-ΞΊB and would therefore represent a novel small molecule therapeutic target for the prevention of inflammation induced preterm labour. METHODS: The effect of a small molecule CRTH2 agonist on NF-ΞΊB activity in human cultured amniocytes and myocytes was assessed by detection of p65 and phospho-p65 by immunoblot. Endogenous CRTH2 expression in amniocytes, myocytes and peripheral blood mononuclear cells (PBMCs) was examined by PCR, western analysis and flow cytometry, with amniocytes and myocytes transfected with CRTH2 acting as a positive control in flow cytometry studies. RESULTS: The CRTH2 agonist had no effect on NF-ΞΊB activity in amniocytes and myocytes. Although CRTH2 mRNA was detected in amniocytes and myocytes, CRTH2 was not detectable at the protein level, as demonstrated by western analysis and flow cytometry. 15dPGJ2 inhibited phospho-65 in PBMC'S, however the CRTH2 antagonist was not able to attenuate this effect. In conclusion, CRTH2 is not expressed on human amniocytes or myocytes and plays no role in the mechanism of 15dPGJ2-mediated inhibition of NF-ΞΊB

    Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no β€œtrue” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in β€œdorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today
    • …
    corecore