115 research outputs found

    The cientificWorldJOURNAL Clinical Study Whey Protein Lycosome Formulation Improves Vascular Functions and Plasma Lipids with Reduction of Markers of Inflammation and Oxidative Stress in Prehypertension

    Get PDF
    Parameters reflecting cardiovascular health and inflammation were studied in a pilot clinical trial conducted on 40 patients with prehypertension. The patients were treated with a new proprietary formulation of a whey protein (WP) isolate embedded into lycopene micelles (WPL) during a 1-month period. Control groups received lycopene or WP as a singular formulation or placebo pills for the same period of time. Combined WPL formulation of whey protein and lycopene has caused multiple favorable changes in the cardiovascular function (including a tendency to the reduced systemic blood pressure), the plasma lipid profile, and the inflammatory status of patients with prehypertension, whereas singular formulations of the compounds and placebo did not have such an effect. The reduction of plasma triglycerides and cholesterol fractions and almost two-fold decline in C-reactive protein (CRP) and inflammatory oxidative damage (IOD) levels as well as an increase in nitric oxide (NO), tissue oxygenation (StO 2 ), and flow-mediated dilation values constitute the most significant benefit/outcome of the treatment with the combined formulation of whey protein and lycopene. The treatment did not affect the values of ankle-brachial index (ABI), body weight, and body mass index (BMI)

    Apelin Enhances Directed Cardiac Differentiation of Mouse and Human Embryonic Stem Cells

    Get PDF
    Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors

    Hypoxia-Induced Invadopodia Formation Involves Activation of NHE-1 by the p90 Ribosomal S6 Kinase (p90RSK)

    Get PDF
    The hypoxic and acidic microenvironments in tumors are strongly associated with malignant progression and metastasis, and have thus become a central issue in tumor physiology and cancer treatment. Despite this, the molecular links between acidic pH- and hypoxia-mediated cell invasion/metastasis remain mostly unresolved. One of the mechanisms that tumor cells use for tissue invasion is the generation of invadopodia, which are actin-rich invasive plasma membrane protrusions that degrade the extracellular matrix. Here, we show that hypoxia stimulates the formation of invadopodia as well as the invasive ability of cancer cells. Inhibition or shRNA-based depletion of the Na+/H+ exchanger NHE-1, along with intracellular pH monitoring by live-cell imaging, revealed that invadopodia formation is associated with alterations in cellular pH homeostasis, an event that involves activation of the Na+/H+ exchange rate by NHE-1. Further characterization indicates that hypoxia triggered the activation of the p90 ribosomal S6 kinase (p90 RSK), which resulted in invadopodia formation and site-specific phosphorylation and activation of NHE-1. This study reveals an unsuspected role of p90RSK in tumor cell invasion and establishes p90RS kinase as a link between hypoxia and the acidic microenvironment of tumors

    Adiponectin circulating levels and 10-year (2002–2012) cardiovascular disease incidence:the ATTICA Study

    Get PDF
    Purpose: Adiponectin is an adipokine with anti-inflammatory and cardiovascular-protective properties. Existing epidemiological evidence is conflicting on the exact relationship between adiponectin and long-term cardiovascular disease (CVD) risk. Our aim was to prospectively assess whether circulating adiponectin is associated with long-term incident CVD. Methods: A population-based, prospective study in adults (>18 years) without previous CVD history (ATTICA study). Circulating total adiponectin levels were measured at baseline (2001–2002) in a sub-sample (n = 531; women/men: 222/309; age: 40 ± 11 years) of the ATTICA cohort and complete 10-year follow-up data were available in 366 of these participants (women/men: 154/212; age: 40 ± 12 years). Results: After adjusting for multiple factors, including age, sex, body mass index, waist circumference, smoking, physical activity, Mediterranean diet adherence, hypertension, diabetes, and hypercholesterolemia, our logistic regression analysis indicates that an increase in circulating total adiponectin levels by 1 unit was associated with 36% lower CVD risk (relative risk [RR]: 0.64, 95% confidence interval [CI] 0.42–0.96; p = 0.03). Further adjusting for interleukin-6 plasma levels had no significant impact (RR: 0.60, 95% CI 0.38–0.94; p = 0.03), while additional adjustment for circulating C-reactive protein (CRP) modestly attenuated this association (RR: 0.63, 95% CI 0.40–0.99; p = 0.046). Conclusions: In our study, elevated circulating total adiponectin levels were associated with lower 10-year CVD risk in adults without previous CVD, independently of other established CVD risk factors. This association appeared to be modestly attenuated by CRP, yet was not mediated by interleukin-6 which is the main endocrine/circulating pro-inflammatory cytokine

    Cytostatic potential of novel agents that inhibit the regulation of intracellular pH

    Get PDF
    Cells within the acidic extracellular environment of solid tumours maintain their intracellular pH (pHi) through the activity of membrane-based ion exchange mechanisms including the Na+/H+ antiport and the Na+-dependent Cl−/HCO3− exchanger. Inhibition of these regulatory mechanisms has been proposed as an approach to tumour therapy. Previously available inhibitors of these exchangers were toxic (e.g. 4,4-diisothiocyanstilbene-2,2-disulphonic acid), and/or non-specific (e.g. 5-N-ethyl-N-isopropyl amiloride). Using two human (MCF7, MDA-MB231) and one murine (EMT6) breast cancer cell lines, we evaluated the influence of two new agents, cariporide (an inhibitor of the Na+/H+ antiport) and S3705 (an inhibitor of the Na+-dependent Cl−/HCO3− exchanger) on the regulation of intracellular pH (pHi). The cytotoxicity of the two agents was assessed by using clonogenic assays. Our results suggest that cariporide has similar efficacy and potency to 5-N-ethyl-N-isopropyl amiloride for inhibition of Na+/H+ exchange while S3705 is more potent and efficient than 4,4-diisothiocyanstilbene-2,2-disulphonic acid in inhibiting Na+-dependent Cl−/HCO3− exchange. The agents inhibited the growth of tumour cells when they were incubated at low pHe (7.0–6.8), but were non-toxic to cells grown at doses that inhibited the regulation of pHi. Our results indicate that cariporide and S3705 are selective cytostatic agents under in vitro conditions that reflect the slightly acidic microenvironment found in solid tumours

    Benign external hydrocephalus: a review, with emphasis on management

    Get PDF
    Benign external hydrocephalus in infants, characterized by macrocephaly and typical neuroimaging findings, is considered as a self-limiting condition and is therefore rarely treated. This review concerns all aspects of this condition: etiology, neuroimaging, symptoms and clinical findings, treatment, and outcome, with emphasis on management. The review is based on a systematic search in the Pubmed and Web of Science databases. The search covered various forms of hydrocephalus, extracerebral fluid, and macrocephaly. Studies reporting small children with idiopathic external hydrocephalus were included, mostly focusing on the studies reporting a long-term outcome. A total of 147 studies are included, the majority however with a limited methodological quality. Several theories regarding pathophysiology and various symptoms, signs, and clinical findings underscore the heterogeneity of the condition. Neuroimaging is important in the differentiation between external hydrocephalus and similar conditions. A transient delay of psychomotor development is commonly seen during childhood. A long-term outcome is scarcely reported, and the results are varying. Although most children with external hydrocephalus seem to do well both initially and in the long term, a substantial number of patients show temporary or permanent psychomotor delay. To verify that this truly is a benign condition, we suggest that future research on external hydrocephalus should focus on the long-term effects of surgical treatment as opposed to conservative management

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore