39 research outputs found

    Lancet

    Get PDF
    BACKGROUND: In 2015, the second cycle of the CONCORD programme established global surveillance of cancer survival as a metric of the effectiveness of health systems and to inform global policy on cancer control. CONCORD-3 updates the worldwide surveillance of cancer survival to 2014. METHODS: CONCORD-3 includes individual records for 37.5 million patients diagnosed with cancer during the 15-year period 2000-14. Data were provided by 322 population-based cancer registries in 71 countries and territories, 47 of which provided data with 100% population coverage. The study includes 18 cancers or groups of cancers: oesophagus, stomach, colon, rectum, liver, pancreas, lung, breast (women), cervix, ovary, prostate, and melanoma of the skin in adults, and brain tumours, leukaemias, and lymphomas in both adults and children. Standardised quality control procedures were applied; errors were rectified by the registry concerned. We estimated 5-year net survival. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: For most cancers, 5-year net survival remains among the highest in the world in the USA and Canada, in Australia and New Zealand, and in Finland, Iceland, Norway, and Sweden. For many cancers, Denmark is closing the survival gap with the other Nordic countries. Survival trends are generally increasing, even for some of the more lethal cancers: in some countries, survival has increased by up to 5% for cancers of the liver, pancreas, and lung. For women diagnosed during 2010-14, 5-year survival for breast cancer is now 89.5% in Australia and 90.2% in the USA, but international differences remain very wide, with levels as low as 66.1% in India. For gastrointestinal cancers, the highest levels of 5-year survival are seen in southeast Asia: in South Korea for cancers of the stomach (68.9%), colon (71.8%), and rectum (71.1%); in Japan for oesophageal cancer (36.0%); and in Taiwan for liver cancer (27.9%). By contrast, in the same world region, survival is generally lower than elsewhere for melanoma of the skin (59.9% in South Korea, 52.1% in Taiwan, and 49.6% in China), and for both lymphoid malignancies (52.5%, 50.5%, and 38.3%) and myeloid malignancies (45.9%, 33.4%, and 24.8%). For children diagnosed during 2010-14, 5-year survival for acute lymphoblastic leukaemia ranged from 49.8% in Ecuador to 95.2% in Finland. 5-year survival from brain tumours in children is higher than for adults but the global range is very wide (from 28.9% in Brazil to nearly 80% in Sweden and Denmark). INTERPRETATION: The CONCORD programme enables timely comparisons of the overall effectiveness of health systems in providing care for 18 cancers that collectively represent 75% of all cancers diagnosed worldwide every year. It contributes to the evidence base for global policy on cancer control. Since 2017, the Organisation for Economic Co-operation and Development has used findings from the CONCORD programme as the official benchmark of cancer survival, among their indicators of the quality of health care in 48 countries worldwide. Governments must recognise population-based cancer registries as key policy tools that can be used to evaluate both the impact of cancer prevention strategies and the effectiveness of health systems for all patients diagnosed with cancer. FUNDING: American Cancer Society; Centers for Disease Control and Prevention; Swiss Re; Swiss Cancer Research foundation; Swiss Cancer League; Institut National du Cancer; La Ligue Contre le Cancer; Rossy Family Foundation; US National Cancer Institute; and the Susan G Komen Foundation

    Global survival trends for brain tumors, by histology: analysis of individual records for 556,237 adults diagnosed in 59 countries during 2000–2014 (CONCORD-3)

    Get PDF
    Background: Survival is a key metric of the effectiveness of a health system in managing cancer. We set out to provide a comprehensive examination of worldwide variation and trends in survival from brain tumors in adults, by histology. Methods: We analyzed individual data for adults (15–99 years) diagnosed with a brain tumor (ICD-O-3 topography code C71) during 2000–2014, regardless of tumor behavior. Data underwent a 3-phase quality control as part of CONCORD-3. We estimated net survival for 11 histology groups, using the unbiased nonparametric Pohar Perme estimator. Results: The study included 556,237 adults. In 2010–2014, the global range in age-standardized 5-year net survival for the most common sub-types was broad: in the range 20%–38% for diffuse and anaplastic astrocytoma, from 4% to 17% for glioblastoma, and between 32% and 69% for oligodendroglioma. For patients with glioblastoma, the largest gains in survival occurred between 2000–2004 and 2005–2009. These improvements were more noticeable among adults diagnosed aged 40–70 years than among younger adults. Conclusions: To the best of our knowledge, this study provides the largest account to date of global trends in population-based survival for brain tumors by histology in adults. We have highlighted remarkable gains in 5-year survival from glioblastoma since 2005, providing large-scale empirical evidence on the uptake of chemoradiation at population level. Worldwide, survival improvements have been extensive, but some countries still lag behind. Our findings may help clinicians involved in national and international tumor pathway boards to promote initiatives aimed at more extensive implementation of clinical guidelines

    Worldwide trends in population-based survival for children, adolescents, and young adults diagnosed with leukaemia, by subtype, during 2000–14 (CONCORD-3) : analysis of individual data from 258 cancer registries in 61 countries

    Get PDF
    Background Leukaemias comprise a heterogenous group of haematological malignancies. In CONCORD-3, we analysed data for children (aged 0–14 years) and adults (aged 15–99 years) diagnosed with a haematological malignancy during 2000–14 in 61 countries. Here, we aimed to examine worldwide trends in survival from leukaemia, by age and morphology, in young patients (aged 0–24 years). Methods We analysed data from 258 population-based cancer registries in 61 countries participating in CONCORD-3 that submitted data on patients diagnosed with leukaemia. We grouped patients by age as children (0–14 years), adolescents (15–19 years), and young adults (20–24 years). We categorised leukaemia subtypes according to the International Classification of Childhood Cancer (ICCC-3), updated with International Classification of Diseases for Oncology, third edition (ICD-O-3) codes. We estimated 5-year net survival by age and morphology, with 95% CIs, using the non-parametric Pohar-Perme estimator. To control for background mortality, we used life tables by country or region, single year of age, single calendar year and sex, and, where possible, by race or ethnicity. All-age survival estimates were standardised to the marginal distribution of young people with leukaemia included in the analysis. Findings 164563 young people were included in this analysis: 121328 (73·7%) children, 22963 (14·0%) adolescents, and 20272 (12·3%) young adults. In 2010–14, the most common subtypes were lymphoid leukaemia (28205 [68·2%] patients) and acute myeloid leukaemia (7863 [19·0%] patients). Age-standardised 5-year net survival in children, adolescents, and young adults for all leukaemias combined during 2010–14 varied widely, ranging from 46% in Mexico to more than 85% in Canada, Cyprus, Belgium, Denmark, Finland, and Australia. Individuals with lymphoid leukaemia had better age-standardised survival (from 43% in Ecuador to ≥80% in parts of Europe, North America, Oceania, and Asia) than those with acute myeloid leukaemia (from 32% in Peru to ≥70% in most high-income countries in Europe, North America, and Oceania). Throughout 2000–14, survival from all leukaemias combined remained consistently higher for children than adolescents and young adults, and minimal improvement was seen for adolescents and young adults in most countries. Interpretation This study offers the first worldwide picture of population-based survival from leukaemia in children, adolescents, and young adults. Adolescents and young adults diagnosed with leukaemia continue to have lower survival than children. Trends in survival from leukaemia for adolescents and young adults are important indicators of the quality of cancer management in this age group.peer-reviewe

    Diffusion and migration in polymer electrolytes

    Full text link
    Mixtures of neutral polymers and lithium salts have the potential to serve as electrolytes in next-generation rechargeable Li-ion batteries. The purpose of this review is to expose the delicate interplay between polymer-salt interactions at the segmental level and macroscopic ion transport at the battery level. Since complete characterization of this interplay has only been completed in one system: mixtures of poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI), we focus on data obtained from this system. We begin with a discussion of the activity coefficient, followed by a discussion of six different diffusion coefficients: the Rouse motion of polymer segments is quantified by Dseg, the self-diffusion of cations and anions is quantified by Dself,+ and Dself,−, and the build-up of concentration gradients in electrolytes under an applied potential is quantified by Stefan-Maxwell diffusion coefficients, D0+, D0-, and D+-. The Stefan-Maxwell diffusion coefficients can be used to predict the velocities of the ions at very early times after an electric field is applied across the electrolyte. The surprising result is that D0- is negative in certain concentration windows. A consequence of this finding is that at these concentrations, both cations and anions are predicted to migrate toward the positive electrode at early times. We describe the controversies that surround this result. Knowledge of the Stefan-Maxwell diffusion coefficients enable prediction of the limiting current. We argue that the limiting current is the most important characteristic of an electrolyte. Excellent agreement between theoretical and experimental limiting current is seen in PEO/LiTFSI mixtures. What sequence of monomers that, when polymerized, will lead to the highest limiting current remains an important unanswered question. It is our hope that the approach presented in this review will guide the development of such polymers

    Exploring the Ion Solvation Environments in Solid-State Polymer Electrolytes through Free-Energy Sampling

    Full text link
    The success of poly(ethylene oxide) (PEO) in solid-state polymer electrolytes for lithium-ion batteries is well established. Recently, in order to understand this success and to explore possible alternatives, we studied polyacetal electrolytes to deepen the understanding of the effect of the local chemical structure on ion transport. Advanced molecular dynamics techniques using newly developed, tailored interaction potentials have helped elucidate the various coordination environments of ions in these systems. In particular, the competition between cation-anion pairing and coordination by the polymer has been explored using free-energy sampling (metadynamics). At equivalent reduced temperatures, with respect to the polymer-specific glass-transition temperature, two-dimensional free-energy plots reveal the existence of multiple coordination environments for the lithium (Li) ions in these systems and their relative stabilities. Furthermore, we observe that the Li-ion movement in PEO follows a serial, stepwise pathway when moving from one coordination state to another, whereas this happens in a more continuous and concerted fashion in a polyacetal such as poly(1,3-dioxalane) [P(EO-MO)]. The implication is that interconversion between coordination states of the Li ions may be easier in P(EO-MO). However, the overarching observation from our free-energy analysis is that Li-ion coordination is dominated by the polymer (in either case) and contact-ion pairs are rare. We rationalize the observed higher increase in glass-transition temperature (Tg) with salt loading in polyacetals as due to intermolecular Li-ion coordination involving multiple polymer chains, rather than just one chain for PEO-based electrolytes. This interchain coupling in the polyacetals, resulting in the higherTg, works against any gains due to variations in Li-ion coordination that might enhance transport processes over PEO. Further research is required to overcome the interdependence between local coordination and macroscopic properties to compete with PEO electrolytes at the same absolute working temperature

    Improved Li<sup>+</sup>Transport in Polyacetal Electrolytes: Conductivity and Current Fraction in a Series of Polymers

    Full text link
    Polymer electrolytes mitigate safety concerns surrounding flammable liquid electrolytes in lithium-ion batteries. Poly(ethylene oxide) (PEO) electrolytes demonstrate viable conductivity values (∼1 × 10-3 S/cm) at elevated temperatures (>70 °C) but a relatively low Li+ current fraction (≤0.2) because strong Li+ coordination inhibits cation mobility. We have developed a series of polyacetal electrolytes by systematically varying methylene oxide (MO) and ethylene oxide (EO) units in the polymer backbone. These materials maintain high oxygen-to-carbon ratios like PEO but offer improved ion transport, revealing trends of decreasing conductivity and increasing current fraction with respect to polymer composition. In particular, the increasing current fraction measured via the Bruce-Vincent method suggests that MO units improve Li+ mobility relative to anion mobility. We calculate an overall efficacy (product of conductivity and current fraction) for each polymer/salt composition and identify two polymers - P(EO-MO) and P(EO-2MO) - that outperform PEO at high and low salt concentrations, respectively
    corecore