285 research outputs found

    Importance of Granular Structure in the Initial Conditions for the Elliptic Flow

    Full text link
    We show effects of granular structure of the initial conditions (IC) of hydrodynamic description of high-energy nucleus-nucleus collisions on some observables, especially on the elliptic-flow parameter v2. Such a structure enhances production of isotropically distributed high-pT particles, making v2 smaller there. Also, it reduces v2 in the forward and backward regions where the global matter density is smaller, so where such effects become more efficacious.Comment: 4 pages, 5 figure

    Numerical Models of Binary Neutron Star System Mergers. I.: Numerical Methods and Equilibrium Data for Newtonian Models

    Get PDF
    The numerical modeling of binary neutron star mergers has become a subject of much interest in recent years. While a full and accurate model of this phenomenon would require the evolution of the equations of relativistic hydrodynamics along with the Einstein field equations, a qualitative study of the early stages on inspiral can be accomplished by either Newtonian or post-Newtonian models, which are more tractable. In this paper we offer a comparison of results from both rotating and non-rotating (inertial) frame Newtonian calculations. We find that the rotating frame calculations offer significantly improved accuracy as compared with the inertial frame models. Furthermore, we show that inertial frame models exhibit significant and erroneous angular momentum loss during the simulations that leads to an unphysical inspiral of the two neutron stars. We also examine the dependence of the models on initial conditions by considering initial configurations that consist of spherical neutron stars as well as stars that are in equilibrium and which are tidally distorted. We compare our models those of Rasio & Shapiro (1992,1994a) and New & Tohline (1997). Finally, we investigate the use of the isolated star approximation for the construction of initial data.Comment: 32 pages, 19 gif figures, manuscript with postscript figures available at http://www.astro.sunysb.edu/dswesty/docs/nspap1.p

    Numerical estimation of densities

    Full text link
    [Abridged] We present a novel technique, dubbed FiEstAS, to estimate the underlying density field from a discrete set of sample points in an arbitrary multidimensional space. FiEstAS assigns a volume to each point by means of a binary tree. Density is then computed by integrating over an adaptive kernel. As a first test, we construct several Monte Carlo realizations of a Hernquist profile and recover the particle density in both real and phase space. At a given point, Poisson noise causes the unsmoothed estimates to fluctuate by a factor ~2 regardless of the number of particles. This spread can be reduced to about 1 dex (~26 per cent) by our smoothing procedure. [...] We conclude that our algorithm accurately measure the phase-space density up to the limit where discreteness effects render the simulation itself unreliable. Computationally, FiEstAS is orders of magnitude faster than the method based on Delaunay tessellation that Arad et al. employed, making it practicable to recover smoothed density estimates for sets of 10^9 points in 6 dimensions.Comment: 12 pages, 18 figures, submitted to MNRAS. The code is available upon reques

    Current Distribution in the Three-Dimensional Random Resistor Network at the Percolation Threshold

    Full text link
    We study the multifractal properties of the current distribution of the three-dimensional random resistor network at the percolation threshold. For lattices ranging in size from 838^3 to 80380^3 we measure the second, fourth and sixth moments of the current distribution, finding {\it e.g.\/} that t/ν=2.282(5)t/\nu=2.282(5) where tt is the conductivity exponent and ν\nu is the correlation length exponent.Comment: 10 pages, latex, 8 figures in separate uuencoded fil

    Smoothed Particle Hydrodynamics for Relativistic Heavy Ion Collisions

    Full text link
    The method of smoothed particle hydrodynamics (SPH) is developped appropriately for the study of relativistic heavy ion collision processes. In order to describe the flow of a high energy but low baryon number density fluid, the entropy is taken as the SPH base. We formulate the method in terms of the variational principle. Several examples show that the method is very promising for the study of hadronic flow in RHIC physics.Comment: 14 pages, 8figure

    NeXSPheRIO results on azimuthal anisotropy in Au-Au collisions at 200A GeV

    Full text link
    In this work, we present the results obtained by the hydrodynamic code NeXSPheRIO on anisotropic flows. In our calculation, we made use of event-by-event fluctuating initial conditions, and chemical freeze-out was explicitly implemented. We studied directed flow, elliptic flow and forth harmonic coefficient for various hadrons at different centrality windows for Au+Au collisions at 200 AGeV. The results are discussed and compared with experimental data from RHIC.Comment: 6 pages and 6 figures, sqm2008 contributio

    Elasticity of Gaussian and nearly-Gaussian phantom networks

    Full text link
    We study the elastic properties of phantom networks of Gaussian and nearly-Gaussian springs. We show that the stress tensor of a Gaussian network coincides with the conductivity tensor of an equivalent resistor network, while its elastic constants vanish. We use a perturbation theory to analyze the elastic behavior of networks of slightly non-Gaussian springs. We show that the elastic constants of phantom percolation networks of nearly-Gaussian springs have a power low dependence on the distance of the system from the percolation threshold, and derive bounds on the exponents.Comment: submitted to Phys. Rev. E, 10 pages, 1 figur

    Adiabatic scaling relations of galaxy clusters

    Full text link
    The aim of the present work is to show that, contrary to popular belief, galaxy clusters are **not** expected to be self-similar, even when the only energy sources available are gravity and shock-wave heating. In particular, we investigate the scaling relations between mass, luminosity and temperature of galaxy groups and clusters in the absence of radiative processes. Theoretical expectations are derived from a polytropic model of the intracluster medium and compared with the results of high-resolution adiabatic gasdynamical simulations. It is shown that, in addition to the well-known relation between the mass and concentration of the dark matter halo, the effective polytropic index of the gas also varies systematically with cluster mass, and therefore neither the dark matter nor the gas profiles are exactly self-similar. It is remarkable, though, that the effects of concentration and polytropic index tend to cancel each other, leading to scaling relations whose logarithmic slopes roughly match the predictions of the most basic self-similar models. We provide a phenomenological fit to the relation between polytropic index and concentration, as well as a self-consistent scheme to derive the non-linear scaling relations expected for any cosmology and the best-fit normalizations of the M-T, L-T and F-T relations appropriate for a Lambda-CDM universe. The predicted scaling relations reproduce observational data reasonably well for massive clusters, where the effects of cooling and star formation are expected to play a minor role.Comment: 12 pages, 5 figures, accepted by MNRA

    Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.

    Get PDF
    BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
    corecore