118 research outputs found
The Ubiquitin-Like Protein PLIC-1 or Ubiquilin 1 Inhibits TLR3-Trif Signaling
Background: The innate immune responses to virus infection are initiated by either Toll-like receptors (TLR3/7/8/9) or cytoplasmic double-stranded RNA (dsRNA)-recognizing RNA helicases RIG-I and MDA5. To avoid causing injury to the host, these signaling pathways must be switched off in time by negative regulators. Methodology/Principal Findings: Through yeast-two hybrid screening, we found that an ubiquitin-like protein named protein linking integrin-associated protein to cytoskeleton 1(PLIC-1 or Ubiquilin 1) interacted with the Toll/interleukin-1 receptor (TIR) domain of TLR4. Interestingly, PLIC-1 had modest effect on TLR4-mediated signaling, but strongly suppressed the transcriptional activation of IFN-β promoter through the TLR3-Trif-dependent pathway. Concomitantly, reduction of endogenous PLIC-1 by short-hairpin interfering RNA (shRNA) enhanced TLR3 activation both in luciferase reporter assays as well as in new castle disease virus (NDV) infected cells. An interaction between PLIC-1 and Trif was confirmed in co-immunoprecipitation (Co-IP) and GST-pull-down assays. Subsequent confocal microscopic analysis revealed that PLIC-1 and Trif colocalized with the autophagosome marker LC3 in punctate subcellular structures. Finally, overexpression of PLIC-1 decreased Trif protein abundance in a Nocodazole-sensitive manner. Conclusions: Our results suggest that PLIC-1 is a novel inhibitor of the TLR3-Trif antiviral pathway by reducing the abundance of Trif. © 2011 Biswas et al
Expression of angiogenic factors predicts response to chemoradiotherapy and prognosis of oesophageal squamous cell carcinoma
The ability to predict patients' responses to chemoradiotherapy by analyzing pre-treatment biopsy specimens would be valuable for managing oesophageal squamous-cell cancer. To this end, the expression of p53, thymidine phosphorylase and vascular endothelial cell growth factor was analyzed by immunohistochemistry in 52 patients with oesophageal squamous-cell cancer prior to chemoradiotherapy. Treatment consisted of radiotherapy (40 Gy) and 5 day-infusion of 5-Fluorouracil (500 mg m−2 per day) combined with cisplatin (10 mg m−2 per day). Following treatment, imaging and endoscopic reassessment was performed to establish treatment response. Thirty-one patients underwent radical surgery and 21 patients were treated with an additional 20 Gy of radiotherapy. Of the tumours studied, 58% were p53-positive, 40% thymidine phosphorylase-positive and 44% vascular endothelial cell growth factor-positive. A clinical response was observed in 36 patients (69%) and was negatively associated with thymidine phosphorylase expression (P=0.02) and vascular endothelial cell growth factor expression (P<0.001). However, the 5-year survival rate was significantly lower only in patients with vascular endothelial cell growth factor-positive tumours (P=0.037). Multivariate analysis identified vascular endothelial cell growth factor as a significant independent prognostic factor (P=0.0147). These results suggest that expression of angiogenic factors has predictive value for the treatment response and outcome of patients with oesophageal cancer
Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20
Toll-like receptor (TLR) signaling is linked to autophagy that facilitates elimination of intracellular pathogens. However, it is largely unknown whether autophagy controls TLR signaling. Here, we report that poly(I:C) stimulation induces selective autophagic degradation of the TLR adaptor molecule TRIF and the signaling molecule TRAF6, which is revealed by gene silencing of the ubiquitin-editing enzyme A20. This type of autophagy induced formation of autophagosomes and could be suppressed by an autophagy inhibitor and lysosomal inhibitors. However, this autophagy was not associated with canonical autophagic processes, including involvement of Beclin-1 and conversion of LC3-I to LC3-II. Through screening of TRIF-interacting ‘autophagy receptors’ in human cells, we identified that NDP52 mediated the selective autophagic degradation of TRIF and TRAF6 but not TRAF3. NDP52 was polyubiquitinated by TRAF6 and was involved in aggregation of TRAF6, which may result in the selective degradation. Intriguingly, only under the condition of A20 silencing, NDP52 could effectively suppress poly(I:C)-induced proinflammatory gene expression. Thus, this study clarifies a selective autophagic mechanism mediated by NDP52 that works downstream of TRIF–TRAF6. Furthermore, although A20 is known as a signaling fine-tuner to prevent excess TLR signaling, it paradoxically downregulates the fine-tuning effect of NDP52 on TLR signaling
Gelation of cassia gum by freezing and thawing
Aqueous solution of cassia gum (CG), which is categorized as a galactomannan polysaccharide having mannose/galactose ratio = 5/1, forms hydrogels by freezing and thawing. When frozen CG aqueous solution was thawed, transparent sol was separated from a turbid gel, i.e. syneresis occurred. Gel concentration ({(Mass of dry gel) / (Mass of gel)} × 100) increased with increasing CG concentration. Viscoelastic properties of CG hydrogels formed by freezing and thawing were investigated by thermomechanical analysis (TMA) in water using an oscillation mode at 0.05 Hz. Dynamic modulus (E′) increased from 3 kPa to ca. 5 kPa with increasing freezing rate. In contrast, E′ maintained a constant value regardless of repeating number of freezing and thawing. From TMA results, it is concluded that the density of cross-linking network structure depends on the size of ice formed by freezing. At the same time, the low E′ value of CG gels is ascribed to the fact that association of galactosyl side group is disturbed by the stiff chain attributed to the unsubstituted region of CG
Toll-Like Receptor 3 (TLR3) Plays a Major Role in the Formation of Rabies Virus Negri Bodies
Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3−/− mice—in which brain tissue was less severely infected—had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV–induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit
Effect of addition of different hydrocolloids on pasting, thermal, and rheological properties of cassava starch
Amidos e gomas são hidrocoloides frequentemente usados em sistemas alimentícios com a finalidade de fornecer textura, umidade e mobilidade de água. A interação amido-goma em sistemas alimentícios pode alterar o inchamento do grânulo de amido e as suas propriedades de gelatinização e reológicas. Neste trabalho, o efeito da adição de goma xantana (GX), carboximetilcelulose sódica (CMC) e carragena (CAR) nas concentrações de 0,15, 0,25, 0,35 e 0,45% (p/v) sobre as propriedades de pasta, térmicas e reológicas do amido de mandioca foi estudado. O Poder de inchamento (PI) e a Microscopia Eletrônica de Varredura (MEV) dos géis de amido também foram avaliados. Os resultados obtidos mostraram que a GX apresentou forte interação com o amido, penetrando entre os grânulos e provocando aumento das viscosidades de pasta, PI, G' e G, e redução da retrogradação do amido; CMCS aumentou as viscosidades de pasta, PI, G' e G das misturas, principalmente em função da sua maior capacidade de reter água, e não por causa da interação com o amido; CAR não modificou qualquer das propriedades do amido, porque não houve nenhuma interação entre essa goma e o amido de mandioca nas concentrações usadas.Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G, respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G, respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.Universidade Estadual Paulista Departamento de Engenharia e Tecnologia de AlimentosUniversidade Estadual Paulista Departamento de Engenharia e Tecnologia de Alimento
A rheological study on the effects of heating rate and dispersing method on the gelling characteristics of curdlan aqueous dispersions
Motion analysis of a power unit moored with a cable for tidal power generation (2D calculation considering fluid forces acting on the unit and cable)
Abstract
The power unit with counter-rotating propellors has been proposed for a tidal power generation. The unit has the potential to be moored with a cable because of inherent equilibrium of the rotational moments acting on the counter-rotating propellors. On the other hand, the flow condition of a tidal current is not steady, therefore, the motion and the posture of the power unit should be investigated for the stability of the power generation in terms of the fluid dynamics. In this study, the two-dimensional motion of the power unit and the cable modelled with rigid elements connected each other with pivots are analyzed as the combination of translational and rotational motions with the constraint of the connected elements. The time-dependent position, angle and relative velocity of each calculation element were obtained to validate the usefulness of the proposed method.</jats:p
- …
