202 research outputs found

    Continued-fraction expansion of eigenvalues of generalized evolution operators in terms of periodic orbits

    Full text link
    A new expansion scheme to evaluate the eigenvalues of the generalized evolution operator (Frobenius-Perron operator) HqH_{q} relevant to the fluctuation spectrum and poles of the order-qq power spectrum is proposed. The ``partition function'' is computed in terms of unstable periodic orbits and then used in a finite pole approximation of the continued fraction expansion for the evolution operator. A solvable example is presented and the approximate and exact results are compared; good agreement is found.Comment: CYCLER Paper 93mar00

    An Interference Cancellation Scheme for TFI-OFDM in Time-Variant Large Delay Spread Channel

    Get PDF
    In the mobile radio environment, signals are usually impaired by fading and multipath delay phenomenon. In such channels, severe fading of the signal amplitude and inter-symbol-interference (ISI) due to the frequency selectivity of the channel cause an unacceptable degradation of error performance. Orthogonal frequency division multiplexing (OFDM) is an efficient scheme to mitigate the effect of multipath channel. Since it eliminates ISI by inserting guard interval (GI) longer than the delay spread of the channel. In general, the GI is usually designed to be longer than the delay spread of the channel, and is decided after channel measurements in the desired implementation scenario. However, the maximum delay spread is longer than GI, the system performance is significantly degraded. The conventional time-frequency interferometry (TFI) for OFDM does not consider timevariant channel with large delay spread. In this paper, we focus on the large delay spread channel and propose the ISI and inter-carrier-interference (ICI) compensation method for TFI-OFDM

    Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators

    Full text link
    We show that a wide class of uncoupled limit cycle oscillators can be in-phase synchronized by common weak additive noise. An expression of the Lyapunov exponent is analytically derived to study the stability of the noise-driven synchronizing state. The result shows that such a synchronization can be achieved in a broad class of oscillators with little constraint on their intrinsic property. On the other hand, the leaky integrate-and-fire neuron oscillators do not belong to this class, generating intermittent phase slips according to a power low distribution of their intervals.Comment: 10 pages, 3 figure

    Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system

    Full text link
    Noise driven electroconvection in sandwich cells of nematic liquid crystals exhibits on-off intermittent behaviour at the onset of the instability. We study laser scattering of convection rolls to characterize the wavelengths and the trajectories of the stochastic amplitudes of the intermittent structures. The pattern wavelengths and the statistics of these trajectories are in quantitative agreement with simulations of the linearized electrohydrodynamic equations. The fundamental τ3/2\tau^{-3/2} distribution law for the durations τ\tau of laminar phases as well as the power law of the amplitude distribution of intermittent bursts are confirmed in the experiments. Power spectral densities of the experimental and numerically simulated trajectories are discussed.Comment: 20 pages and 17 figure

    Asymptotic power law of moments in a random multiplicative process with weak additive noise

    Get PDF
    It is well known that a random multiplicative process with weak additive noise generates a power-law probability distribution. It has recently been recognized that this process exhibits another type of power law: the moment of the stochastic variable scales as a function of the additive noise strength. We clarify the mechanism for this power-law behavior of moments by treating a simple Langevin-type model both approximately and exactly, and argue this mechanism is universal. We also discuss the relevance of our findings to noisy on-off intermittency and to singular spatio-temporal chaos recently observed in systems of non-locally coupled elements.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Universal Scaling Properties in Large Assemblies of Simple Dynamical Units Driven by Long-Wave Random Forcing

    Get PDF
    Large assemblies of nonlinear dynamical units driven by a long-wave fluctuating external field are found to generate strong turbulence with scaling properties. This type of turbulence is so robust that it persists over a finite parameter range with parameter-dependent exponents of singularity, and is insensitive to the specific nature of the dynamical units involved. Whether or not the units are coupled with their neighborhood is also unimportant. It is discovered numerically that the derivative of the field exhibits strong spatial intermittency with multifractal structure.Comment: 10 pages, 7 figures, submitted to PR

    Condensation in Globally Coupled Populations of Chaotic Dynamical Systems

    Get PDF
    The condensation transition, leading to complete mutual synchronization in large populations of globally coupled chaotic Roessler oscillators, is investigated. Statistical properties of this transition and the cluster structure of partially condensed states are analyzed.Comment: 11 pages, 4 figures, revte

    Mutual synchronization and clustering in randomly coupled chaotic dynamical networks

    Get PDF
    We introduce and study systems of randomly coupled maps (RCM) where the relevant parameter is the degree of connectivity in the system. Global (almost-) synchronized states are found (equivalent to the synchronization observed in globally coupled maps) until a certain critical threshold for the connectivity is reached. We further show that not only the average connectivity, but also the architecture of the couplings is responsible for the cluster structure observed. We analyse the different phases of the system and use various correlation measures in order to detect ordered non-synchronized states. Finally, it is shown that the system displays a dynamical hierarchical clustering which allows the definition of emerging graphs.Comment: 13 pages, to appear in Phys. Rev.
    corecore