
Title Scaling properties in large assemblies of simple dynamical
units driven by long-wave random forcing

Author(s) Kuramoto, Y; Nakao, H

Citation PHYSICAL REVIEW LETTERS (1997), 78(21): 4039-4042

Issue Date 1997-05-26

URL http://hdl.handle.net/2433/50551

Right Copyright 1997 American Physical Society

Type Journal Article

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39185042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


VOLUME 78, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 26 MAY 1997

Scaling Properties in Large Assemblies of Simple Dynamical Units Driven
by Long-Wave Random Forcing

Yoshiki Kuramoto and Hiroya Nakao
Department of Physics, Graduate School of Sciences,Kyoto University, Kyoto 606, Japan

(Received 14 January 1997)

Large assemblies of nonlinear dynamical units driven by a long-wave fluctuating external field are
found to generate strong turbulence with scaling properties. This type of turbulence is so robust
that it persists over a finite parameter range with parameter-dependent exponents of singularity, and
is insensitive to the specific nature of the dynamical units involved. Whether or not the units
are coupled with their neighborhood is also unimportant. It is discovered numerically that the
derivative of the original amplitude field exhibits strong spatial intermittency with multifractal structure.
[S0031-9007(97)03232-8]

PACS numbers: 47.27.–i, 05.45.+b, 47.53.+n, 87.10.+e

We report our discovery of a new type of turbulent
behavior which arises generally in large assemblies of
simple dynamical units driven by a long-wave randomly
fluctuating field. The driving field may actually be a
self-generated internal field due to long-range interaction,
and this particular situation was studied in a previous
paper [1] where a rough explanation of the origin of
power-law correlations was also given. The present study
thus aims at expanding as much as possible the class of
systems capable of exhibiting the same type of turbulence,
and also proposing a more transparent and coherent
explanation of the phenomena.

An illustrative example is given by an array ofun-
coupledlogistic mapsfsXd ­ aXs1 2 Xd with driving

Xn11s jd ­ fsssXns jdddd 1 hns jd, j ­ 1, 2, . . . , N , (1)

where hns jd ­
K
2

≥
1 1 cosf2ph j

N 1 cnjg
¥
, cn being a

random variable in the intervals0, 1g with uniform distri-
bution. Were it not for spatial dependence ofhn, Eq. (1)
would representN identical copies of a randomly driven
map; the dynamics of such an ensemble was studied in
[2]. Making hn nonuniform changes the problem com-
pletely. Let the parameter values be set such that indi-
vidual maps are entrained tohn in the sense that their
maximum Lyapunov exponent (common to all maps) is
negative. Unlikehn, however, the corresponding ampli-
tude profile is not smooth at all, a typical example of
which is displayed in Fig. 1(a). Such ill-behaved nature
of the pattern is even amplified in Fig. 1(b) which shows a
strongly intermittent pattern of thedifferential amplitudes
Y s jd ; jXs j 1 1d 2 Xs jdj constructed from Fig. 1(a).

Before proceeding to further numerical study, some
theoretical predictions will be made as to the statistics of
turbulence to be shared by the above system or more gen-
eral assemblies of units under long-wave random driving.
For this purpose, it seems more convenient to work with a
picture in which the dynamical units form a quasicontin-
uum rather than a lattice, and the driving field has a char-
acteristic wavelength ofOs1d. Our primary concern is to

understand how a simple driving field alone can generate
a nontrivial correlation between uncoupled units.

Suppose that each unit is represented by a discrete-
time dynamical systemXn11 ­ f sXnd. Let the units be
driven by an additive random forcehn which is smooth
in space and statistically invariant with respect to spatial
translations. The unit at siter is governed by the equation

Xn11srd ­ f sssXnsrdddd 1 hnsrd . (2)

Analogously to fully developed fluid turbulence [3], let
us consider various moments of the amplitude increment
between two sites. We thus concentrate on a pair of units
at sitesr0 and r0 1 x with distancex ; jxj satisfying
x ø 1. The amplitude incrementynsxd ; Xnsr0 1 xd 2

Xnsr0d obeys the equation

yn11 ­ L̂nyn 1 Osjynj2d 1 Dhn , (3)

where L̂nyn is the linearization off sXd about X ­
Xnsr0d, andDhn ; hnsr0 1 xd 2 hnsr0d is a quantity of

FIG. 1. (a) Instantaneous amplitude profile for the driven
logistic maps (1). N ­ 1024, K ­ 0.2, anda ­ 3.7s1 2 Kd.
(b) Profile of differential amplitudesYs jd constructed from (a).
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Osxd. Equation (3) describes a multiplicative stochastic
process [4] with small additive noise. Similar equations
have recently aroused considerable interest in connection
with on-off intermittency and related phenomena [5,6].
While on-off intermittency refers to a certain type of
temporal self-similarity peculiar to a special parameter
value, our major concern below is aspatial self-similarity
observable over an open parameter range.

Equation (3) may be simplified by neglecting all
eigenmodes of̂Ln other than the least stable one. This
leads to a scalar equation foryn ; jynj

yn11 ­ eln yn 1 Os y2
nd 1 bnx , (4)

where ln is the local Lyapunov exponent of the unit at
siter0, andbn is a randomly changing factor ofOs1d. For
sufficiently smallx, there is a range ofy satisfyingx ø

y ø 1 where both the nonlinear and inhomogeneous
terms in (4) are negligible. We are thus left with a linear
equationyn11 ­ eln yn or zn11 2 zn ­ ln in terms of a
new variablezn ­ ln yn. If the random process ofln

is Markoffian, which we assume, the probability density
Qnszd for zn evolves in this linear regime according to

Qn11szd ­
Z `

2`

wsldQnsz 2 lddl , (5)

where wsld is the normalized probability density for
ln. Equation (5) admits a stationary solution of the
form Qszd ~ expsbzd ; yb . Thus, the corresponding
probability density foryn, denoted byPs yd, becomes

Ps yd ~ y211b , (6)

where b is determined as a nontrivial (i.e., nonzero)
solution of Z `

2`

e2blwslddl ­ 1 . (7)

Note that for sufficiently smallb, we have

b ­ 2lyl2 , (8)

where the bar means the average with respect towsld.
We have now to modify (6) by taking into account the
effects of the nonlinear and inhomogeneous terms in (4).
The nonlinearity, which is assumed to work in such a way
that the unstable growth ofyn be saturated whenln . 0,
may roughly be incorporated by introducing a cutoff in
Ps yd at y ­ 1. On the other hand, the inhomogeneous
term will come into play whenyn becomesOsxd or
smaller, thus suppressing the power-law divergence of
Ps yd there. For the purpose of qualitative argument, one
may therefore use the following simple model forPs yd:

Ps yd ­ Cx211b s y # xd, Cy211b sx , y # 1d ,

0 s y . 1d, C : normalization const. (9)

This form allows us to calculate theqth momentk ysxdql
for arbitraryq. For simplicity, only positive values ofq
will be considered below. In the subcritical regime (b ,

0, i.e.,l , 0), where the dynamical units are entrained to

the driving field, we obtain power-law moments

k ysxdql , xq sq , jbjd, xjbj sq . jbjd . (10)

The result ofq-independent exponent valid for higher
moments (q . jbj) is anomalous, reflecting strong non-
Gaussianity ofPs yd. In the postcritical regime (b . 0),
all moments possess anx-independent part, while the
residual part still obeys a power law:

k ysxdql , bsq 1 bd21 1 Osxbd . (11)

The reason why the amplitude difference in the post-
critical regime is nonvanishing for vanishingx is that
the two units in question have lost their respective syn-
chrony with hn, implying also the loss of their mutual
synchrony. Note that (10) and (11) are asymptotic for-
mulae valid forx ! 0 under fixedb. Nearjbj ­ q and
0 under fixedx, however, there exist crossover regimes
(C1) jsb 1 qd ln xj ø 1 and (C2)jb ln xj ø 1, respec-
tively, in each of which we havek ysxdql , xjbjj ln xj and
j ln xj21.

A few more remarks are now given on the cases of
q ­ 2 and 1 for which our theory recovers our previous
results [1]. We obtain from (10) and (11) the second
moment

k ysxd2l , x2 s22d, xjbj s22 , 0d ,

bs2 1 bd21 1 Osxbd sb . 0d , (12)

while in the aforementioned crossover regimes, we have
k ysxd2l , x2j ln xj (C1) and1yj ln xj (C2).

The caseq ­ 1 is related to the length of an amplitude
versus space curve. This is because the lengthSsxd
for the part of an amplitude profile contained in the
unit interval, when measured with the resolution of the
minimum length scalex, is given bySsxd , x21k ysxdl.
Applying (10) and (11), we thus obtainSsxd , const
(b , 21), xjbj21 (21 , b , 0), andx21 (b . 0). In
the crossover regimes, however, these must be replaced
by Ssxd , j ln xj (C1) and1ysxj ln xjd (C2). The fractal
dimensionDf defined bySsxd , x12Df thus becomes

Df ­ 1 sb , 21d, 2 2 jbj s21 , b , 0d,

2 sb . 0d , (13)

except for the crossover regimes.
The above arguments on discrete-time dynamics can

easily be carried over to continuous-time dynamics. One
needs only make replacementsn ! t, n 1 1 ! t 1

dt, and ln ! lstddt. Then, (4) becomesÙy ­ lstdy 1

Os y2d 1 bstdx, and (5) reduces to a Fokker-Planck equa-
tion ÙQ ­ 2l≠zQ 1

1
2 l2≠2

zQ. The latter admits a sta-
tionary solutionQszd ~ expsbzd, and the corresponding
Ps yd is the same form as (6) withb given by (8).

In order to test the validity of our argument, the array
of logistic maps (1) has been analyzed numerically. In
Fig. 2, we displayPs yd versusy for some values ofK ,
with x fixed at a sufficiently small value. As expected,
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FIG. 2. Probability densityPs yd in logarithmic scales for
the driven logistic maps (1). For eachK value, Ps yd obeys
a power law in the intermediate range ofy. The exponent
changes as21.40, 21.77, and 22.33 with increasing K.
a ­ 3.7s1 2 Kd, andx ­ 102421.

Ps yd exhibits a power-law dependence ony for not
too small or too largey, with the exponent depending
on K . Figure 3 shows momentsk ysxdql versusx for
some values ofq. Their power-law dependence onx
is clear, but the observed change of the exponent with
q, indicated in the small box, is not so sudden across
q ­ jbj as the formula (10) predicts. The main source of
this discrepancy seems to be the existence of the crossover
regime C1.

FIG. 3. Momentsk ysxdql vs x in logarithmic scales for the
driven logistic maps (1), showing power-law dependence onx
for eachq with q-dependent exponenthsqd. Numericalh vs q
curve is displayed in the inset and compared with the theoretical
curve. K ­ 0.2, anda ­ 3.7s1 2 Kd.

Up to this point, we have considered uncoupled units.
We now show some evidence that inclusion of short-
range coupling leaves the above-described power-law
behavior of moments essentially unchanged. As an
illustration, we modify (1) with additional diffusive cou-
pling of the form Dh fsssXns j 1 1dddd 1 fsssXns j 2 1dddd 2

2fsssXns jddddjy2. Without the forcing termhn, such a model
would be identical with the usual coupled map lattice.
In Fig. 4, the second momentsk ysxd2l are compared
between the two systems, one with diffusive coupling
(D ­ 0.1) and the other without. The deviation from a
power law in the presence of coupling is limited to the
range covering ten or so units out ofN (­ 4096). This
defines a lower cutoff lengthxd similar to the dissipation
length in fully developed fluid turbulence. Althoughxd

will increase withD like xd ~
p

D, we have a prefactor
N21, so that xd can be made arbitrarily smaller than
1 (i.e., the upper cutoff) by increasingN indefinitely.
Thus, the intermediate range ofx, which is similar to the
inertial subrange, has a sufficient extention over which the
power-law nature of correlations is practically unaffected.

It is also worth noting that whether the dynamical units
involved are themselves chaotic or not is unimportant
to the power-law nature ofPs yd and k ysxdql. This
has been confirmed with driven phase oscillators of the
form Ùfj ­ 1 2 c cosfj 1 hjstd, jcj , 1 with suitable
random drivinghjstd. To save space, however, we will
not show such numerical data here.

Some new aspects of our turbulent field are revealed
through an analysis of the differential amplitudesY s jd or
quantities defined similarly when the spatial dimension is
two or higher. We call such a field theY field. The
situation is analogous to fully developed fluid turbulence
where the study of the energy dissipation field provides
rich information which would hardly be available from
the study of the velocity field alone. We will restrict

FIG. 4. The second momentk ysxd2l vs x in logarithmic
scales for the driven logistic maps (1) with additional diffusive
coupling (D ­ 0.1) and without (D ­ 0). K ­ 0.2, a ­
3.7s1 2 Kd, andN ­ 4096.
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FIG. 5. Size distributionrsld of the laminar domains of theY
field f; Ysxd ­ jXsx 1 dd 2 Xsxdjydg in logarithmic scales
for the driven logistic maps (1).K ­ 0.2, a ­ 3.7s1 2 Kd,
N ­ 1024, d ­ N21, Y0 ­ 0.2, and0.4.

our discussion to 1D systems below. Note that in the
absence of short-range coupling a true derivativedXydx
may not exist in the continuum limit, especially when the
amplitude profile is fractal. TheY field must then be
redefined asY sxd ; d21jXsx 1 dd 2 Xsxdj with finite
but sufficiently smalld.

Spatial intermittency of Y sxd as exemplified in
Fig. 1(b) may be analyzed similarly to the case of on-off
intermittency. This is achieved by measuring the proba-
bility density rsld for the space intervall over which
the units are in thelaminar state, namely, theirY values
stay below a certain thresholdY0. Such an analysis was
done for the driven logistic maps (1). It is clear from
Fig. 5 that, as in the on-off intermittency,rsld exhibits an
inverse power law. We confirmed that, for not too small
or too largeY0, the exponent is insensitive to the choice
of Y0, but depends onK.

A more thorough characterization of theY field is pro-
vided by the generalized fractal dimensionsDq ; sq 2

1d21 lime!0 ln
P

i m
q
i y ln e [7]. Here, the measuremi of

theith box of sizee is defined as being proportional to the
integral ofY sxd within the same box, with the condition of
the total measure being normalized. Similar multifractal
analysis was performed for the energy dissipation field
of fully developed fluid turbulence [8]. Figure 6 shows
Dq obtained for the driven logistic maps (1). Note that
D0 ­ 1, which is simply becauseYsxd is nonvanishing
almost everywhere. In contrast to the power-law behavior
of the original amplitude field, which was rather easy to
explain, the multifractal nature of theY -field seems non-
trivial and remains to be explained. This is because the
latter does not result simply from the probability density
for a singley variable, but is related to singular correla-
tions among differenty’s created by the spatially corre-
lated forcing field.

Finally, we emphasize the importance of the type of tur-
bulence reported here. Because of its remarkable robust-

FIG. 6. Dimension spectrumDq of the Y field for the driven
logistic maps (1). K ­ 0.2, a ­ 3.7s1 2 Kd, N ­ 1024, and
d ­ N21.

ness, similar phenomena should exist quite universally.
They may appear in a wide variety of coupled and un-
coupled systems, once placed in a long-wave randomly
fluctuating external field. Some possible candidates
would be electrohydrodynamic convection in nematic
liquid crystals, light-sensitive Belousov-Zhabotinsky
reaction, and nonlinear optical media. Their experimental
verification is strongly desired.
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Research Fund from the Ministry of Education, Science
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