We show that a wide class of uncoupled limit cycle oscillators can be
in-phase synchronized by common weak additive noise. An expression of the
Lyapunov exponent is analytically derived to study the stability of the
noise-driven synchronizing state. The result shows that such a synchronization
can be achieved in a broad class of oscillators with little constraint on their
intrinsic property. On the other hand, the leaky integrate-and-fire neuron
oscillators do not belong to this class, generating intermittent phase slips
according to a power low distribution of their intervals.Comment: 10 pages, 3 figure