We introduce and study systems of randomly coupled maps (RCM) where the
relevant parameter is the degree of connectivity in the system. Global
(almost-) synchronized states are found (equivalent to the synchronization
observed in globally coupled maps) until a certain critical threshold for the
connectivity is reached. We further show that not only the average
connectivity, but also the architecture of the couplings is responsible for the
cluster structure observed. We analyse the different phases of the system and
use various correlation measures in order to detect ordered non-synchronized
states. Finally, it is shown that the system displays a dynamical hierarchical
clustering which allows the definition of emerging graphs.Comment: 13 pages, to appear in Phys. Rev.