53 research outputs found

    Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?

    Get PDF
    Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed

    Variational Approach to Molecular Kinetics

    Get PDF
    The eigenvalues and eigenvectors of the molecular dynamics propagator (or transfer operator) contain the essential information about the molecular thermodynamics and kinetics. This includes the stationary distribution, the metastable states, and state-to-state transition rates. Here, we present a variational approach for computing these dominant eigenvalues and eigenvectors. This approach is analogous the variational approach used for computing stationary states in quantum mechanics. A corresponding method of linear variation is formulated. It is shown that the matrices needed for the linear variation method are correlation matrices that can be estimated from simple MD simulations for a given basis set. The method proposed here is thus to first define a basis set able to capture the relevant conformational transitions, then compute the respective correlation matrices, and then to compute their dominant eigenvalues and eigenvectors, thus obtaining the key ingredients of the slow kinetics
    corecore