, Variational Approach to Molecular Kinetics

${ }_{2}$ Feliks Nüske, Bettina G. Keller,* Guillermo Pérez-Hernández, Antonia S. J. S. Mey, and Frank Noé*

3 Department for Mathematics and Computer Science, Fiere Universitat of Berlin, 14195 Berlin, Germany

Abstract

The eigenvalues and eigenvectors of the molecular dynamics propagator (or transfer operator) contain the essential information about the molecular thermodynamics and kinetics. This includes the stationary distribution, the metastable states, and state-to-state transition rates. Here, we present a variational approach for computing these dominant eigenvalues and eigenvectors. This approach is analogous the variational approach used for computing stationary states in quantum mechanics. A corresponding method of linear variation is formulated. It is shown that the matrices needed for the linear variation method are correlation matrices that can be estimated from simple MD simulations for a given basis set. The method proposed here is thus to first define a basis set able to capture the relevant conformational transitions, then compute the respective correlation matrices, and then to compute their dominant eigenvalues and eigenvectors, thus obtaining the key ingredients of the slow kinetics.

1. INTRODUCTION

50 "

Biomolecules, in particular proteins, often act as small but highly complex machines. Examples range from allosteric changes ${ }^{1,2}$ to motor proteins, such as kinesin, which literally walks along microtubules, ${ }^{1,3}$ and the ribosome, an enormous complex of RNA molecules and proteins responsible for the synthesis of proteins in the cell. ${ }^{1,4}$ To understand how these biomolecular machines work, it does not suffice to know their structure, that is, their three-dimensional shape. One needs to understand how the structure gives rise to the particular conformational dynamics by which the function of the molecule is achieved. Protein folding is the second field of research in which conformational dynamics plays a major role. Proteins are long polymers of amino acids that fold into particular threedimensional structure. The astonishingly efficient search for this native conformation in the vast conformational space of the protein can be understood in terms of its conformational dynamics. Besides time-resolved experiments, molecular dynamics simulations are the main technique to investigate conformational dynamics. To date, these simulations yield information on the structure and dynamics of biomolecules at a spatial and temporal resolution, which cannot be paralleled by any experimental technique. However, the extraction of kinetic models from simulation data is far from trivial, since kinetic information cannot be inferred from structural similarity. ${ }^{5,6}$ Similar structures might be separated by large kinetic barriers, and structures that are far apart in some distance measure might be kinetically close.

A natural approach toward modeling the kinetics of molecules involves the partitioning of conformation space into discrete states. ${ }^{7-17}$ Subsequently, transition rates or probabilities between states can be calculated, either based on rate theories, ${ }^{7,18,19}$ or based on transitions observed in MD trajectories. ${ }^{6,13,15,16,20-22}$ The resulting models are often called transition networks, Master equation models, or Markov (state) models (MSM), ${ }^{23-25}$ where "Markovianity" means that the kinetics are modeled by a
memoryless jump process between states. In Markov state models, 51 it is assumed that the molecular dynamics simulations used 52 represent an ergodic, reversible, and metastable Markov process. ${ }^{25} 53$ Ergodicity means that every possible state would be visited in an 54 infinitely long trajectory and every initial probability distribution of 55 the system converges to a Boltzmann distribution. Reversibility 56 reflects the assumption that the system is in thermal equilibrium. 57 Metastability means that there are parts of the state space in which 58 the system remains over time scales much longer than the fastest 59 fluctuations of the molecule. In order to construct an MSM, 60 the conformational space of the molecule is discretized into 61 nonoverlapping microstates, and the observed transitions between 62 pairs of microstates are counted. One obtains a square matrix with 63 transition probabilities, the so-called transition matrix, from which 64 a wide range of kinetic and thermodynamic properties can be 65 calculated. The equilibrium probability distribution (in the chosen 66 state space) is obtained as the first eigenvector of the transition 67 matrix. Directly from the matrix elements, one can infer kinetic 68 networks and transition paths. ${ }^{26,27}$ The dominant eigenvectors of 69 the transition matrix are used to identify metastable states. ${ }^{28-32} 70$ Each dominant eigenvector can be interpreted as a kinetic process, 71 and the associated eigenvalue is related to the time scale on which 72 this process occurs. ${ }^{25}$ All this information can be combined to 73 reconstruct the hierarchical structure of the energy landscape. ${ }^{31,33} 74$ Finally, transition matrices represent a very useful framework to 75 connect data from time-resolved experiments with simulation 76 data. ${ }^{34,35}$ Over the past decade, extensive knowledge on which 77 factors determine the quality of an MSM has been accumulated. 78 For example, MSMs that are constructed using the internal 79 degrees of freedom of the molecule tend to yield better results 80 than those that were constructed using global descriptors of 81 the structure (H-bond patterns, number of native contacts). ${ }^{31} 82$

[^0]$$
83
$$
$$
95
$$
contained in specific clusters. With all of the above methods, 146 choosing an appropriate combination of the metric, the 147 clustering method, and the number and the location of clusters 148 or cores is still often a trial-and-error approach.

149
Following the recently introduced variational principle for 150 metastable stochastic processes, ${ }^{65}$ we propose a variational 151 approach to molecular kinetics. Starting from the fact that 152 the molecular dynamics propagator is a self-adoint operator, 153 we can formulate a variational principle. Using the method of 154 linear variation we derive a Roothaan-Hall-type generalized 155 eigenvalue problem that yields an optimal representation of 156 eigenvectors of the propagator in terms of an arbitrary basis 157 set. Both ordinary MSMs using crisp clustering and MSMs 158 with a smooth discretization can be understood as special 159 cases of this variational approach. In contrast to previous 160 MSMs using smooth discretization, our basis functions do not 161 need to be a partition of unity, although this choice has 162 some merits.

163
Besides its theoretical attractiveness, the variational approach 164 has some advantages over MSMs. First, the data-driven 165 discretization is replaced by a user-selection of an appropriate 166 basis set, typically of internal molecular coordinates. The 167 chosen basis set may reflect chemical intuition-for example, 168 basis functions may be predefined to fit known transition states 169 of backbone dihedral angles or formation/dissociation of 170 tertiary contacts between hydrophobically or electrostatically 171 interacting groups. As a result, one may obtain a precise model 172 with fewer basis functions needed than discrete MSM states. 173 Moreover, each basis function is associated with a chemical 174 meaning, and thus, the interpretation of the estimated 175 eigenfunctions becomes much more straightforward than for 176 MSMs. When using the same basis set for different molecular 177 systems of the same class, one obtains models that are directly 178 comparable in contrast to conventional MSMs. The represen- 179 tation of the propagator eigenfunctions can still be systemati- 180 cally improved by adding more basis functions or by varying the 181 basis set.

182
Our method is analogous to the method of linear variation 183 used in quantum chemistry. ${ }^{66}$ The major difference is that the 184 propagator is self-adjoint with respect to a non-Euclidean scalar 185 product, whereas the Hamiltonian is self-adjoint with respect to 186 the Euclidean scalar product. The derivation of the method is 187 detailed in section 2 and Appendices A-C.

2. THEORY

2.1. Dynamical Propagator. Consider the conformational 189 space X of an arbitrary molecule consisting of N atoms, that is, 190 the $3 N-6$-dimensional space spanned by the internal degrees of 191 freedom of the molecule. The conformational dynamics of the 192 molecule in this space can be represented by a dynamical 193 process $\left\{x_{t}\right\}$, which samples at a given time t a particular point 194 $x_{t} \in X$. In this context, x_{t} is often called a trajectory. This 195 process is governed by the equations of motion, and it can be 196 simulated using standard molecular-dynamics programs. We 197 assume that an implementation of thermostatted molecular 198 dynamics is employed, which ensures that x_{t} is time- 199 homogeneous, Markovian, ergodic, and reversible with respect 200 to a unique stationary density (usually the Boltzmann 201 distribution). We introduce a propagator formulation of these 202 dynamics, following. ${ }^{65}$ Readers familiar with this approach might 203 want to skip to section 2.2.

Next, consider an infinite ensemble of molecules of the same 205 type, distributed in the conformational space according to some 206

207 initial probability density $\left|\rho_{0}(x)\right\rangle$. This initial probability density 208 evolves in time in a definite manner that is determined by the 209 aforementioned equations of motion for the individual 210 molecules. We assume that the time evolution is Markovian

$$
\begin{align*}
p(x, y ; \tau) \mathrm{d} y & =\mathbb{P}\left(x_{t+\tau} \in y \mathrm{~d} y \mid x_{t}=x\right) \tag{1}\\
& =\mathbb{P}\left(x_{\tau} \in y \mathrm{~d} y \mid x_{0}=x\right) \tag{2}
\end{align*}
$$

211 where τ is a finite time step, and $p(x, y ; \tau)$ is the so-called 212 transition density, which is assumed to be independent of time $213 t$ (time-homogeneous). Figure 1 shows an example of the

Figure 1. Illustration of two propagators acting on a probability density $\left|\rho_{t}(x)\right\rangle$. Gray surface: time evolution of $\left|\rho_{t}(x)\right\rangle$. Black dotted line: snap shots of $\left|\rho_{t}(x)\right\rangle$. Cyan line: equilibrium density $|\pi(x)\rangle$ to which $\left|\rho_{t}(x)\right\rangle$ eventually converges. Red, blue: propagators with different lag times τ, which propagate an initial density by a time step τ in time.
space can be expressed as linear combination of $\left\{l_{\alpha}(x)\right\} .241$ Equation 5 can be rewritten as

$$
\begin{align*}
\left|\rho_{t+n \tau}(x)\right\rangle & \left.=\sum_{\alpha} c_{\alpha} \lambda_{\alpha}^{n} l_{\alpha}(x)\right\rangle \tag{7}\\
& =\sum_{\alpha} c_{\alpha} \mathrm{e}^{-n \tau / t_{\alpha}\left|l_{\alpha}(x)\right\rangle} \tag{8}
\end{align*}
$$

where n is the number of discrete time steps τ. The 243 eigenfunctions can be interpreted as kinetic processes that 244 transport probability density from one part of the conforma- 245 tional space to another and thus modulate the shape of the 246 overall probability density. See ref 25 for a detailed explanation 247 of the interpretation of eigenfunctions. The eigenvalues are 248 linked to the time scales t_{α} on which the associated kinetic 249 processes take place by

$$
\begin{equation*}
t_{\alpha}=-\frac{\tau}{\ln \left(\lambda_{\alpha}\right)} \tag{}
\end{equation*}
$$

These time scales are of particular interest because they may 252 be accessible using various kinetic experiments. ${ }^{35,67-69} 253$

Given the aforementioned properties of the molecular 254 dynamics implementation, $\mathcal{P}(\tau)$ is an operator with the 255 following properties. A more detailed explanation can be 256 found in Appendix A.

257

- $\mathcal{P}(\tau)$ has a unique stationary density; that is, there is a 258 unique solution $|\pi(x)\rangle$ to the eigenvalue problem 259 $\mathcal{P}(\tau)|\pi(x)=| \pi(x)$.
- Its eigenvalue spectrum is bounded from above by $\lambda_{1}=1.260$ Also, λ_{1} is the only eigenvalue of absolute value equal 261 to one.

262

- $\mathcal{P}(\tau)$ is self-adjoint with respect to the weighted scalar 263 product $\langle f \mid g\rangle_{\pi-1}=\int_{\Omega} f(x) g(x) \pi^{-1}(x) \mathrm{d} x$. Consequently, 264 its eigenfunctions $I l_{\alpha}(x)$ form an orthonormal basis of the 265 Hilbert space of square-integrable functions with respect 266 to this scalar product. Its eigenvalues are real and can be 267 numbered in descending order:

268

$$
\begin{equation*}
1=\lambda_{1}>\lambda_{2} \geq \lambda_{3} \geq \ldots \tag{10}
\end{equation*}
$$

2.2. Variational Principle and the Method of Linear 270 Variation. A variational principle can be derived for any 271 operator whose eigenvalue spectrum is bound (either from 272 above or from below) and whose eigenvectors form a complete 273 basis set and are orthonormal with respect to a given scalar 274 product. The variational principle for propagators was derived in. ${ }^{65} 275$ The derivation is analogous to the derivation of the variational 276 principle of the quantum-mechanical Hamilton operator. ${ }^{66}$ For 277 convenience, we give a compact derivation in Appendix B. 278

The variational principle can be summarized in three steps. First, 279 for the exact eigenfunction $\left|l_{\alpha}(x)\right\rangle$, the following equality holds: 280

$$
\begin{equation*}
\left\langle l_{\alpha}\right| \mathcal{P}(\tau)\left|l_{\alpha}\right\rangle_{\pi^{-1}}=\lambda_{\alpha}(\tau)=\mathrm{e}^{-\tau / t_{\alpha}} \tag{}
\end{equation*}
$$

The expression $\langle f| \mathcal{P}(\tau)|f\rangle_{\pi^{-1}}$ is the analogue of the quantum- 282 mechanical expectation value and has the interpretation of a time- 283 lagged autocorrelation (c.f. section 2.3). The autocorrelation of the 284 α-th eigenfunction is identical to the α-th eigenvalue. 285

Second, for any trial function $|f\rangle$ that is normalized according 286 to eq 64, the following inequality holds: 287

$$
\begin{align*}
\langle f| \mathcal{P}(\tau)|f\rangle_{\pi^{-1}} & =\int_{X} f(x) \pi^{-1}(x) \mathcal{P}(\tau) f(x) \mathrm{d} x \tag{12}\\
& \leq \lambda_{1}=1 \tag{13}
\end{align*}
$$

where equality $\langle f| \mathcal{P}(\tau) \mid f_{x}^{-1}=\lambda_{1}$ is achieved if and only if $|f\rangle=\left|l_{1}\right\rangle$. This is at the heart of the variational principle.
Third, this inequality is applicable to other eigenfunctions: When $|f\rangle$ is orthogonal to the $\alpha-1$ first eigenfunctions, the variational principle will apply to the α-th eigenfunction/ eigenvalue pair:

$$
\begin{align*}
& \langle f| \mathcal{P}(\tau)|f\rangle_{\pi^{-1}} \leq \lambda_{\alpha} \tag{14}\\
& \left\langle f \mid l_{\beta}\right\rangle_{\pi^{-1}}=0 \quad \forall \beta=1, \ldots, \alpha-1 \tag{15}
\end{align*}
$$

This variational principle allows to formulate the method of linear variation for the propagator. Again, the derivation detailed in ref 65 is analogous to the derivation of the method of linear variation in quantum chemistry. ${ }^{66}$ The trial function $|j\rangle$ is linearly expanded using a basis of n basis functions $\left\{\left|\varphi_{i}\right\rangle\right\}_{i=1}^{n}$

$$
\begin{equation*}
f=\sum_{i=1}^{n} a_{i}\left|\varphi_{i}\right\rangle \tag{16}
\end{equation*}
$$

where a_{i} are the expansion coefficients. We only choose basis sets consisting of real-valued functions because all eigenvectors of $\mathcal{P}(\tau)$ are real-valued functions. Consequently, the expansion coefficients a_{i} are real numbers. However, the basis set does not necessarily have to be orthonormal. In the method of linear variation, the expansion coefficients a_{i} are varied such that the right-hand side of eq 13 becomes maximal, while the basis functions are kept constant. The variation is carried out under the constraint that $|f\rangle$ remains normalized with respect to eq 64 using the method of Lagrange multipliers. For details, see Appendix C. The derivation leads to a matrix formulation of eq 6:

$$
\begin{equation*}
\mathbf{C a}=\lambda \mathbf{S a} \tag{17}
\end{equation*}
$$

\mathbf{a} is the vector of expansion coefficients $a_{i j}, \mathbf{C}$ is the (timelagged) correlation matrix with elements

$$
\begin{equation*}
C_{i j}=\left\langle\varphi_{i}\right| \mathcal{P}(\tau)\left|\varphi_{j}\right\rangle_{\pi^{-1}} \tag{18}
\end{equation*}
$$

and \mathbf{S} is the overlap matrix of the basis set, where the overlap is calculated with respect to the weighted scalar product

$$
\begin{equation*}
S_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle_{\pi^{-1}} \tag{19}
\end{equation*}
$$

Solving the generalized eigenvalue problem in eq 17, one obtains the first n eigenvectors of $\mathcal{P}(\tau)$ expressed in the basis $\left\{\left|\varphi_{i}\right\rangle\right\}_{i=1}^{n}$ and the associated eigenvalues λ_{α}.
2.3. Estimating the Matrix Elements. To solve the generalized eigenvalue equation (eq 17), we need to calculate the matrix elements $C_{i j}$. In the quantum chemical version of the linear variation approach, the matrix elements $H_{i j}$ for the Hamiltonian \mathcal{H} (see Appendix A) are calculated directly with respect to the chosen basis, either analytically or by solving the integral $H_{i j}=\left\langle\varphi_{i}\right| \mathcal{H}\left|\varphi_{j}\right\rangle$ numerically. Such a direct treatment is not possible for the matrix elements of the propagator. However, we can use a trajectory x_{t} of a single molecule, as it is generated for example by MD simulations, to sample the matrix elements and thus obtain an estimate for $C_{i j}$. For this, we introduce a basis set $\left\{\chi_{i}\right\}$ consisting of the n cofunctions of the original basis set $\left\{\phi_{i}\right\}$ by weighting the original functions with π^{-1}

$$
\begin{equation*}
\chi_{i}(x)=\pi^{-1}(x) \varphi_{i}(x) \Leftrightarrow \varphi_{i}=\pi(x) \chi_{i}(x) \tag{20}
\end{equation*}
$$

Inserting eq 20 into the definition of the matrix elements $C_{i j} 340$ (eq 18), we obtain

$$
\begin{align*}
C_{i j} & =\left\langle\varphi_{i}\right| \mathcal{P}(\tau)\left|\varphi_{j}\right\rangle_{\pi^{-1}} \\
& =\left\langle\chi_{i} \pi\right| \mathcal{P}(\tau)\left|\pi \chi_{j}\right\rangle_{\pi^{-1}} \\
& =\int_{X} \int_{X} \chi_{i}(z) p(y, z, \tau) \pi(y) \chi_{i}(y) \mathrm{d} y \mathrm{~d} z \tag{342}
\end{align*}
$$

The last line of eq 21 has the interpretation of a time-lagged 343 cross-correlation between the functions χ_{i} and χ_{j}

$$
\begin{align*}
\operatorname{cor}\left(\chi_{i}, \chi_{j}, \tau\right):= & \int_{X} \int_{X} \chi_{i}(z) \mathbb{P}\left(x_{t+\tau}=z \mid x_{t}=y\right) \tag{22}\\
& \times \chi_{j}(y) \mathbb{P}\left(x_{t}=y\right) \mathrm{d} y \mathrm{~d} z \tag{23}
\end{align*}
$$

which can be estimated from a time-continuous time series x_{t} of 345 length T as

$$
\begin{equation*}
\widehat{\operatorname{cor}}_{T}\left(\chi_{i}, \chi_{j}, \tau\right)=\frac{1}{T-\tau} \int_{0}^{T-\tau} \chi_{j}\left(x_{t}\right) \chi_{i}\left(x_{t+\tau}\right) d t \tag{24}
\end{equation*}
$$

or from a time-discretized time series x_{t} as

$$
\begin{equation*}
\widehat{\operatorname{cor}}_{T}\left(\chi_{i}, \chi_{j}, \tau\right)=\frac{1}{N_{T}-n_{\tau}} \sum_{t=1}^{N_{T}-n_{\tau}} \chi_{j}\left(x_{t}\right) \chi_{i}\left(x_{t+n_{\tau}}\right) \tag{25}
\end{equation*}
$$

where $N_{T}=T / \Delta t, n_{\tau}=\tau / \Delta t$, and Δt is the time step of the 348 time-discretized time series. In the limit of infinite sampling and 349 for an ergodic process, the estimate approaches the true value 350
$C_{i j}=\operatorname{cor}\left(\chi_{i}, \chi_{j}, \tau\right)=\lim _{T \rightarrow \infty} \widehat{\operatorname{cor}}_{T}\left(\chi_{i}, \chi_{j}, \tau\right)$
Note that the second line in eq 21 can also be read as the 351 matrix representation of an operator which acts on the space 352 spanned by $\left\{\chi_{i}\right\}$, the cofunctions of $\left\{\varphi_{i}\right\}$ (eq 20). This is the so- 353 called transfer operator $\mathcal{J}(\tau)$.

$$
\begin{align*}
& C_{i j}(\tau)=\left\langle\chi_{i} \pi\right| \mathcal{P}(\tau)\left|\pi \chi_{j}\right\rangle_{\pi^{-1}} \tag{27}\\
& =\left\langle\chi_{i}\right| \mathcal{J}(\tau)\left|\chi_{j}\right\rangle_{\pi} \tag{28}\\
& =\left\langle\chi_{i}\right| \mathcal{J}(\tau)\left|\chi_{j}\right\rangle_{\pi} \tag{28}
\end{align*}
$$

with

$$
\begin{equation*}
\mathcal{J}(\tau)|f(z)\rangle=\frac{1}{\pi(z)} \int_{X} p(y, z, \tau) \pi(y) f(y) \mathrm{d} y \tag{29}
\end{equation*}
$$

In particular, $\mathcal{J}(\tau)$ has the same eigenvalues as the propagator, 358 and its eigenfunctions are the cofunctions of the propagator 359 eigenfunctions:

$$
\begin{equation*}
r_{\alpha}(x)=\pi^{-1}(x) l_{\alpha}(x) \tag{30}
\end{equation*}
$$

We will sometimes refer to the functions r_{α} as right 362 eigenfunctions. For more details on the transfer operator the 363 reader is referred to ref 59 .

364
2.4. Crisp Basis Sets-Conventional MSMs. Markov 365 state models (MSMs), as they have been discussed up to now 366 in the literature, ${ }^{23-25,28,30,31,40-43,55,70}$ arise as a special case of 367 the proposed method. Namely, the choice of basis sets in 368 conventional MSMs is restricted to indicator functions, that is, 369 functions that have the value 1 on a particular set S_{i} of the 370 conformational space X and the value 0 otherwise

371

$$
\chi_{i}^{\mathrm{MSM}}(x)= \begin{cases}1 & \text { if } \quad x \in S_{i} \tag{31}\\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{align*}
C_{i j} & =\frac{1}{N_{T}-n_{\tau}} \sum_{t=1}^{N_{T}-n_{\tau}} \chi_{j}^{\mathrm{MSM}}\left(x_{t}\right) \chi_{i}^{\mathrm{MSM}}\left(x_{t+n_{\tau}}\right) \tag{32}\\
& =\frac{z_{i j}}{N_{T}-n_{\tau}} \tag{33}
\end{align*}
$$

In effect, this is a discretization of the conformational space, for which the estimation of the matrix \mathbf{C} (eq 25) reduces to counting the observed transitions $z_{i j}$ between sets S_{i} and S_{j}

It is easy to verify, ${ }^{65}$ that the overlap matrix \mathbf{S} is a diagonal matrix, with entries π_{i} equal to the stationary probabilities of the

$$
\begin{equation*}
S_{i i}=\int_{S_{i}} \pi(x) \mathrm{d} x=: \pi_{i} \tag{34}
\end{equation*}
$$

Thus, the eigenvalue problem eq 17 becomes

$$
\begin{equation*}
\mathbf{C a}=\lambda \Pi \mathbf{a} \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{T a}=\lambda \mathbf{a} \tag{36}
\end{equation*}
$$

where \mathbf{C} is the correlation matrix, $\Pi=\mathbf{S}=\operatorname{diag}\left\{\pi_{1}, \ldots, \pi_{n}\right\}$ is the diagonal matrix of stationary probabilities, and $\mathbf{T}=\prod^{-1} \mathbf{C}$ is the MSM transition matrix. Thus, a is a right eigenvector of the MSM transition matrix. As the equations above provide the linear variation optimum, using MSMs and their eigenvectors corresponds to finding an optimal step-function approximation of the eigenfunctions. Moreover, we can use the weighted functions

$$
\begin{equation*}
\mathbf{b}_{\alpha}=\Pi \mathbf{a}_{\alpha} \tag{37}
\end{equation*}
$$

and see that they are left eigenfunctions of \mathbf{T} :

$$
\begin{equation*}
\mathbf{T} \Pi^{-1} \mathbf{b}=\lambda \Pi^{-1} \mathbf{b} \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{b}^{T} \Pi^{-1} \mathbf{C}=\lambda \mathbf{b}^{T} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{b}^{T} \mathbf{T}=\lambda \mathbf{b}^{T} \tag{40}
\end{equation*}
$$

Note that the crisp basis functions form a partition of unity, meaning that their sum is the constant function with value one, which is the first exact eigenfunction of the transfer operator \mathcal{J} (τ). For this reason, any state space partition that is a partition of unity solves the approximation problem of the first eigenvalue/eigenvector pair exactly: the first eigenvalue is exactly $\lambda_{1}=1$, the expansion coefficients a_{i}^{1} of the first eigenvector $\left|r_{1}\right\rangle$ are all equal to one. The corresponding first left eigenvector $\mathbf{b}_{1}=\Pi a_{1}$ fulfills the stationarity condition:

$$
\begin{equation*}
\mathbf{b}_{1}^{T}=\mathbf{b}_{1}^{T} \mathbf{T} \tag{41}
\end{equation*}
$$

and is, therefore, when normalized to an element sum of 1 , the stationary distribution π of \mathbf{T}.
2.5. Stationary Probability Distribution in the Variational Approach. All previous MSM approaches-including the most common "crisp" cluster MSMs but also the smooth basis function approaches used in refs 24,61 , and 64 -have directly or indirectly used basis functions that are a partition of unity. The reason for this is that using such a partition of unity, one can recover the exact first eigenvector and, thus, a meaningful stationary distribution.

In the present contribution, we give up the partition of unity condition, in order to be able to fully exploit the variational principle of the propagator with an arbitrary choice of basis sets. Therefore, we must investigate whether this approach is still
meaningful and can give us "something" like the stationary 420 distribution. 421
Revisiting the MSM case, the stationary probability numbers 422 π_{i} can be interpreted as stationary probabilities of the sets S_{i}, or, 423 in other words, they measure the contribution of these sets to 424 the full partition function Z : 425

$$
\begin{align*}
& \pi_{i}=\frac{Z_{i}}{Z} \tag{42}\\
& Z_{i}=\int_{S_{i}} \mathrm{e}^{-v(x)} \mathrm{dx}=\int_{X} \chi_{i}^{\mathrm{MSM}}(x) \mathrm{e}^{-v(x)} \mathrm{dx} \tag{427}\\
& \sum_{i} \pi_{i}=\sum_{i} \frac{Z_{i}}{Z}=1 \tag{44}
\end{align*}
$$

where $v(x)$ is a reduced potential.
If we move on to a general basis, we can maintain a similar 430 interpretation of the vector $\mathbf{b}_{1}=\mathbf{S} \mathbf{a}_{1}$, as long as the first estimated 431 eigenvalue λ_{1} remains equal to one. If we use the general definition 432 of Z_{i} as the local density of the basis function χ_{i} :

$$
\begin{equation*}
Z_{i}=\int_{X} \chi_{i}(x) \mathrm{e}^{-v(x)} \mathrm{d} x \tag{45}
\end{equation*}
$$

Then, we still have 435

$$
\begin{equation*}
b_{i}=\frac{Z_{i}}{C} \tag{4}
\end{equation*}
$$

for all i, where 437

$$
\begin{equation*}
C=\int_{X} \sum_{i} \chi_{i}(x) \mathrm{e}^{-v(x)} \mathrm{d} x \tag{47}
\end{equation*}
$$

Interestingly, this relation also becomes approximately true if 439 the estimated eigenvalue λ_{1} approaches one, as proved in 440 Appendix D. As a result, the concept of the stationary 441 distribution is still meaningful for basis sets that do not form 442 a partition of unity. Moreover, it is completely consistent with 443 the variational principle, because the vector \mathbf{b}_{1} becomes a 444 probability distribution in the optimum $\lambda_{1}=1$.
2.6. Estimation Method. We summarize by formulating a 446 computational method to estimate the eigenvectors and 447 eigenvalues of the associated propagator from a time series 448 (trajectory) x_{t} using an arbitrary basis set.

449

1. Choose a basis set $\left\{\chi_{i}\right\}$. 450
2. Estimate the matrix elements of the correlation matrix $\mathbf{C} 451$ and of the overlap matrix S using eq 25 with lag times $\tau{ }_{452}$ and 0 , respectively.
3. Solve the generalized eigenvalue problem in eq 17. This 454 yields the α-th eigenvalue λ_{α} of the propagator (and the 455 transfer operator) and the expansion coefficients a_{i}^{α} of 456 the associated eigenvector. 457
4. The eigenvectors of the transfer operator are obtained 458 directly from the expansion coefficients a_{i}^{α} via 459

$$
\begin{equation*}
r_{\alpha}=\sum_{i=1}^{n} a_{i}^{\alpha}\left|\chi_{i}\right\rangle \tag{460}
\end{equation*}
$$

5. If an estimate of the stationary density π is available, the 461 eigenvectors of the propagator $\mathcal{P}(\tau)$ are obtained from 462

$$
\begin{equation*}
l_{\alpha}=\sum_{i=1}^{n} a_{i}^{\alpha}\left|\varphi_{i}\right\rangle=\sum_{i=1}^{n} a_{i}^{\alpha}\left|\pi \chi_{i}\right\rangle \tag{49}
\end{equation*}
$$

3. METHODS

3.1. One-Dimensional Diffusion Models. 3.1.1. Simulations. We first consider two examples of one-dimensional diffusion processes x_{t} governed by Brownian dynamics. The process is then described by the stochastic differential equation

$$
\begin{equation*}
\mathrm{d} x_{t}=-\nabla v\left(x_{t}\right) \mathrm{d} t+\sqrt{2 D} \mathrm{~d} B_{t} \tag{50}
\end{equation*}
$$

where v is the reduced potential energy (measured in units of $k_{\mathrm{B}} T$, where k_{B} is the Boltzmann constant and T is the temperature), D is the diffusion constant, and $\mathrm{d} B_{t}$ denotes the differential of Brownian motion. For simplicity, we set all of the above constants equal to one. The potential function is given by the harmonic potential

$$
\begin{equation*}
v(x)=0.5 x^{2}, \quad x \in \mathbb{R} \tag{51}
\end{equation*}
$$

in the first case, and by the periodic double-well potential

$$
\begin{equation*}
v(x)=1+\cos (2 x), \quad x \in[-\pi, \pi) \tag{52}
\end{equation*}
$$

in the second case. In order to apply our method, we first produced finite simulation trajectories for both potentials. To this end, we picked an (also artificial) time-step $\Delta t=10^{-3}$, and then used the Euler-Maruyama method, where position x_{k+1} is computed from position x_{k} as

$$
\begin{align*}
& x_{k+1}=x_{k}-\Delta t \nabla v\left(x_{k}\right)+\sqrt{2 D \Delta t} y_{t} \tag{53}\\
& y_{t} \sim \mathcal{N}(0,1) \tag{54}
\end{align*}
$$

In this way, we produced simulations of 5×10^{6} time-steps for the harmonic potential and 10^{7} time-steps for the doublewell potential.
3.1.2. Gaussian Model. We apply our method with Gaussian basis functions to both problems. To this end, $n=2,3, \ldots, 10$ centers are chosen at uniform distance between $x=-4$ and $x=$ 4 for the harmonic potential and between $x=-\pi$ and $x=\pi$ for the double-well potential. In the latter case, the basis functions are modified to be periodic on $[-\pi, \pi)$. Subsequently, an "optimal" width of the Gaussians is picked by simply trying out several choices for the standard deviations between 0.4 and 1.0 and using the one which yields the highest second eigenvalue. From this choice, the matrices \mathbf{C} and \mathbf{S} are estimated and the eigenvalues, functions, and implied time scales are computed.
3.1.3. Markov Models. As a reference for our methods, we also compute Markov state models for both processes. To this end, the simulation data is clustered into $n=2,3, \ldots, 10$ disjoint clusters using the k-means algorithm. Subsequently, the EMMA software package ${ }^{43}$ is used to estimate the MSM transition matrices and to compute eigenvalues and time scales.
3.2. Alanine Dipeptide. 3.2.1. MD Simulations. We performed 20 simulations of 200 ns of all-atom explicit solvent molecular dynamics of alanine dipeptide using the AMBER ff-99SB-ILDN force field. ${ }^{71}$ The detailed simulation setup is found in Appendix E.
3.2.2. Gaussian Model. Similar to the previous example, we use periodic Gaussian functions that only depend on one of the two significant dihedral angles of the system (see section 4.2) to apply our method. For both dihedrals, we separately perform a preselection of the Gaussian trial functions. To this end, we first project the data onto the coordinate, then we solve the projected optimization problem for all possible choices of centers and widths, and then pick the ones yielding the highest eigenvalues. In every step of the optimization, we select three out of four equidistributed centers between $-\pi$ and π, and one
of eleven standard deviations between 0.04π and 0.4π. In this 520 way, we obtain three Gaussian trial functions per coordinate, 521 resulting in a full basis set of six functions. Having determined 522 the parameters for both angles, we use the resulting trial 523 functions to apply our method as before. A bootstrapping 524 procedure is used to estimate the statistical uncertainty of the 525 implied time scales.

526
Note that the variations of basis functions described here to 527 find a "good" basis set could be conducted once for each amino 528 acid (or short sequences of amino acids) for a given force field 529 and then be reused.
3.2.3. Markov Models. This time, we cluster the data into 531 $n=5,6,10,15,20,30,50$ clusters, again using the k-means 532 algorithm. From these cluster-centers, we build Markov models 533 and estimate the eigenvalues and eigenvectors using the EMMA 534 software.

535
3.3. Deca-alanine. 3.3.1. MD Simulations. We performed 536 six 500 ns all-atom explicit solvent molecular-dynamics 537 simulations of deca-alanine using the Amber03 force field. 538 See Appendix E for the detailed simulation setup. 539
3.3.2. Gaussian Model. As before, we use Gaussian basis 540 functions that depend on the backbone dihedral angles of the 541 peptide, which means that we now have a total of 18 internal 542 coordinates. A preselection of the trial functions is performed 543 for every coordinate independently, similar to the alanine 544 dipeptide example. In order to keep the number of basis 545 functions acceptably small, we select two trial functions per 546 coordinate. As before, their centers are chosen from four 547 equidistributed centers along the coordinate, and their standard 548 deviations are chosen from eleven different values between 549 0.04π and 0.4π. We also build a second Gaussian model using 550 five functions per coordinate, with equidistributed centers and 551 standard deviations optimized from the same values as in the 552 first model. Having determined the trial functions, we estimate 553 the matrices \mathbf{C} and \mathbf{S} and compute the eigenvalues and 554 eigenvectors and again use bootstrapping to estimate 555 uncertainties.
3.3.3. Markov Models. We construct two different Markov 557 models from the dihedral angle data. The first is built using 558 kmeans clustering with 1000 cluster centers on the full data set, 559 whereas for the second, we divide the $\phi-\psi$ plane of every 560 dihedral pair along the chain into three regions corresponding 561 to the α-helix, β-sheet, and left-handed α-helix conformation, 562 see section 4.2. Thus, we have three discretization boxes for all 563 dihedral pairs, which yields a total of 8^{3} discrete states to which 564 the trajectory points are assigned.

4. RESULTS

We now turn to the results obtained for the four systems 566 presented in the previous section.

567
4.1. One-dimensional Potentials. The two one-dimensional 568 systems are toy examples where all important properties are 569 either analytically known or can be computed arbitrarily well 570 from approximations. For the harmonic potential, the stationary 571 distribution is just a Gaussian function

$$
\begin{equation*}
|\pi(x)\rangle=\left|l_{1}(x)\right\rangle=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) \tag{55}
\end{equation*}
$$

The exact eigenvalues $\lambda_{\alpha}(\tau)$ are given by

$$
\begin{equation*}
\lambda_{\alpha}(\tau)=\exp (-(\alpha-1) \tau) \tag{574}
\end{equation*}
$$

Figure 2. Illustration of the method with two one-dimensional potentials, the harmonic potential in the left half and a periodic double-well potential in the right half of the figure. (A) Potential v together with its invariant distribution π (shaded) next to two possible choices of basis functions: a three-element crisp basis and a set of three Gaussian functions. (B) Exact right and left second eigenfunctions, $\left|r_{2}\right\rangle$ and $\left.I l_{2}\right\rangle$. (C) Approximation results for these second eigenfunctions obtained from the basis sets shown.

576 and the associated right eigenfunction r_{α} is given by the $577(\alpha-1)$-th normalized Hermite polynomial

$$
\begin{equation*}
\left|r_{\alpha}(x)\right\rangle=\left|H_{\alpha-1}(x)\right\rangle \sim(-1)^{\alpha-1} \exp \left(\frac{x^{2}}{2}\right) \frac{\mathrm{d}^{\alpha-1}}{\mathrm{~d} x^{\alpha-1}} \exp \left(-\frac{x^{2}}{2}\right) \tag{57}
\end{equation*}
$$

The left halves of panels A and B in Figure 2 show the 580 harmonic potential and its stationary distribution, as well as the 1 second right and left eigenfunction. The sign change of $\left|l_{2}\right\rangle$ 82 indicates the oscillation around the potential minimum, which 53 is the slowest equilibration process. Note, however, that there is 4 no energy barrier in the system; that is, this process is not 5 metastable. On the right-hand sides of parts A and B in Figure 2, 6 we see the same for the periodic double-well potential. The invariant density is equal to the Boltzmann distribution, where the normalization constant was computed numerically. The second 9 eigenfunction was computed by a very fine finite-element approximation of the corresponding Fokker-Planck equation, using 1000 linear elements. The slowest transition in the system is 2 the crossing of the barrier between the left and right minimum. 3 This is reflected in the characteristic sign change of the second eigenfunction. Parts A and B of Figure 2 also show two choices of basis sets that can be used to approximate these eigenfunctions: A 6 three element Gaussian basis set and a three state crisp set. The resulting estimates of the right and left eigenfunctions are displayed in Figure 2C. Already with these small basis sets, a 9 good approximation is achieved.

Let us analyze the approximation quality of both methods 01 in more detail. To this end, we first compute the $2 L^{2}$-approximation error between the estimated second eigenfunction $\widehat{\left|r_{2}\right\rangle}$ and the exact solution $\left|r_{2}\right\rangle$, that is, the 604 3 A and B , but the error produced by the Gaussian basis sets 607 decays faster. Even for the 10 -state MSM, we still have a 608 significant approximation error. Another important indicator is 609 the implied time scale $t_{\alpha}(\tau)$, associated to the eigenvalue $\lambda_{\alpha}(\tau) .{ }_{610}$ It is the inverse rate of exponential decay of the eigenvalue, 611 given by $t_{\alpha}(\tau)=-\tau / \lambda_{\alpha}(\tau)$ and corresponds to the equilibration 612 time of the associated slow transition. The exact value of t_{α} is 613 independent of the lag time τ. However, if we estimate the 614 time scale from the approximate eigenvalues, the estimate 615 will be too small due to the variational principle. However, 616 with increasing lag time, the error is expected to decay, as 617 the approximation error also decays with the lag time. The 618 faster this decay occurs, the better the approximation will 619 be. In the lower graphics of Figure 3 A and B , we see the lag 620 time dependence of the second time scale t_{2} for growing 621 crisp and Gaussian basis sets. We observe that it takes only 622 four to five Gaussian basis functions to achieve much faster 623 convergence compared even to a 10-state Markov model. 624 For seven or more Gaussian basis functions, we achieve 625 precise estimates even for very short lag times, which cannot 626 be achieved with Markov models with a reasonable number 627 of states. 628
4.2. Alanine Dipetide. Alanine dipeptide (Ac-Ala-NHMe, 629 i.e. an alanine linked at either end to a protection group) is 630 designed to mimic the dynamics of the amino acid alanine in a 631 peptide chain. Unlike the previous examples, the eigenfunctions 632 and eigenvalues of alanine dipeptide cannot be calculated 633 directly from its potential energy function but have to be 634

Figure 3. Analysis of the discretization error for both 1D-potentials. In the upper figure of both panels, we show the L^{2}-approximation error of the second eigenfunction from both crisp basis functions and Gaussian basis functions, dependent on the size of the basis set. The lower figures show the convergence of the second implied time scales $t_{2}(\tau)$ dependent on the lag time τ. Dotted lines represent the crips basis sets and solid lines the Gaussian basis sets. The colors indicate the size of the basis. 640 importantly it is kne that the dynamical behavior can

661 Lastly, in Figure 4C, we again investigate the convergence of 662 the slowest implied time scales. Different MSMs with a growing

Figure 4. Illustration of the method using the 2D dihedral angle space (ϕ, ψ) of alanine dipeptide trajectory data. (A) Free energy landscape obtained by direct population inversion of the trajectory data. (B1 and B2) Color-coded contour plots of the second and third eigenfunctions of the propagator $\left.\left(I l_{2}\right\rangle\left|I_{3}\right\rangle\right)$, obtained by approximating the functions $\left|r_{2}\right\rangle$ and $\left|r_{3}\right\rangle$ by a Gaussian basis set with six functions, cf eq 48, and weighting the results with the estimated stationary distribution from part A. (C1 and C2) Color-coded contour plots of the second and third eigenfunctions of the propagator $\left(\left|l_{2}\right\rangle,\left|l_{3}\right\rangle\right)$, obtained by approximating the functions $\left|r_{2}\right\rangle$ and $\left|r_{3}\right\rangle$ by a Markov state model with 30 cluster-centers, c.f. eq 48, and weighting the results with the estimated stationary distribution from part A. (D1 and D2) Convergence of implied time scales $t_{\alpha}(\tau)$ (in picoseconds) corresponding to the second and third eigenfunction, as obtained from Markov models using $n=5,6,10,15,20,30,50$ cluster-centers (thin lines), compared to the time scales obtained from the Gaussian model with a total of six basis functions (thick green line). Thin vertical bars indicate the error estimated by a bootstrapping procedure.

663 number of crisp basis functions (cluster-centers) were used and

675 The slow structural processes of deca-alanine are less obvious 676 compared to alanine dipeptide. The Amber03 force field used 677 in our simulation produces a relatively fast transition between

Figure 5. Illustration of the method using dihedral angle coordinates of the deca alanine molecule. (A) Graphical representation of the system. (B) Convergence of the estimated second implied time scale (in nanoseconds) depending on the lag time. We show the results of both Gaussian models and of both the kmeans based MSM and the adapted MSM. Thin vertical bars indicate the error estimated by a bootstrapping procedure. (C) Assignment of representative structures for the second slowest process: The histogram shows how the values of the second estimated eigenfunction $\left|r_{2}\right\rangle$ of the smaller model are distributed over all simulation trajectories. Underneath, we show an overlay of structures taken at random from the vicinity of the peaks at $-2.7,-1.6,0.7$, and 1.3. (D) Overlays of structures corresponding to the most negative (left) and most positive (right) values of the second Markov model eigenvector, taken from the k-means MSM.
the elongated and the helical state of the system, with an 678 associated time scale of 5-10 ns. As we can see in Figure 5B, 679 we are able to recover this slowest time scale with our method, 680 t_{2} converges to roughly 6.5 ns for both models. Comparing this 681 to the two Markov models constructed from the same 682 simulation data, we see that both yield slightly higher time 683 scales: The k-means based MSM returns a value of about 8 ns 684 and the finely discretized one ends up with 8.5 ns. Note that the 685 underestimate of the present Gaussian basis set is systematic, 686 likely due to the fact that all basis functions were constructed as 687 a function of single dihedral angles only, thereby neglecting the 688 coupling between multiple dihedrals.

689
Despite this approximation, we are able to determine the 690 correct structural transition. In order to analyze this, we 691 evaluate the second eigenfunction $\left|r_{2}\right\rangle$, obtained from the 692 smaller model, for all trajectory points, and plot a histogram of 693 these values as displayed in Figure 5C. We then select all frames 694 that are within close distance of the peaks of that histogram and 695 produce overlays of these frames as shown underneath. Clearly, 696 large negative values of the second eigenfunction indicate that 697 the peptide is elongated, whereas large positive values indicate 698 that the helical conformation is attained. This is in accord 699 with a similar analysis of the second right Markov model 700 eigenvector: In Figure 5D, we show overlays of structures taken 701 from states with the most negative and most positive values of 702 the second eigenvector, and we find that the same transition is 703 indicated, although the most negative values correspond to a 704 slightly more bent arrangement of the system.

In summary, it is possible to use a comparatively small basis 706 of 36 Gaussian functions to achieve results about the slowest 707 structural transition which are comparable to those of MSMs 708 constructed from about 1000 and 6500 discrete states, 709 respectively. However, the differences in the time scales point 710 to a weakness of the method: The fact that increasing the 711 number of basis functions does not alter the computed time 712 scale indicates that coordinate correlation cannot be appropri- 713 ately captured using sums of one-coordinate basis functions. In 714 order to use the method for larger systems, we will have to 715 study ways to overcome this problem.

5. CONCLUSIONS

We have presented a variational approach for computing the 717 slow kinetics of biomolecules. This approach is analogous to 718 the variational approach used for computing stationary states in 719 quantum mechanics, but it uses the molecular dynamics 720 propagator (or transfer operator) rather than the quantum- 721 mechanical Hamiltonian. A corresponding method of linear 722 variation is formulated. Since the MD propagator is not 723 analytically tractable for practically relevant cases, the matrix 724 elements cannot be directly computed. Fortunately, these 725 matrix elements can be shown to be correlation functions that 726 can be estimated from simple MD simulations. The method 727 proposed here is thus, to first define a basis set able to capture 728 the relevant conformational dynamics, then compute the 729 respective correlation matrices, and then to compute their 730 dominant eigenvalues and eigenvectors, thus obtaining the key 731 ingredients of the slow kinetics.

732
Markov state models (MSMs) are found to be a special case 733 of the variational principle formulated here, namely for the case 734 that indicator functions (also known as crisp sets or step 735 functions) on the MSM clusters are used as a basis set. 736

We have applied the variational approach using Gaussian 737 basis functions on a number of model examples, including 738
one-dimensional diffusion systems and simulations of the alanine dipeptide and deca-alanine in explicit solvent. Here, we have used only one-dimensional basis sets that were constructed on single coordinates (e.g., dihedral angles), but it is clear that multidimensional basis functions could be straightforwardly used. Despite the simplicity of our bases, we could recover, and in most cases improve the results of n-state MSMs with much less than n basis functions in the applications shown here.

Note that practically all MSM approaches presented thus far use data-driven approaches to find the clusters on which these indicator functions are defined. Such a data-driven approach impairs the comparability of Markov state models of different simulations of the same system, and even more so of Markov state models of different systems. (Essentially, every Markov state model that has been published so far has been parametrized with respect to its own unique basis set). In contrast, the method proposed here allows to define basis sets that are, in principle, transferable between different molecular systems. This improves the comparability of models made for different molecular systems. The second-and possibly decisive-advantage of the proposed method is that the basis sets can be chosen such that they reflect knowledge about the conformational dynamics or about the forcefield with which x_{t} has been simulated. It is thus conceivable that optimal basis sets are constructed for certain classes of small molecules or molecule fragments (e.g., amino acids or short amino acid sequences) and then combined for computing the kinetics of complex molecular systems.

As mentioned earlier, future work will have to focus on a systematic basis set selection and on an efficient use of multidimensional trial functions. Related to this is the question of model validation and error estimation. Due to the use of finite simulation data, use of a very fine basis set can lead to a growing statistical uncertainty of the estimated eigenvalues and eigenfunctions. In order to improve the basis set while balancing the model error and the statistical noise, a procedure to estimate this uncertainty is needed. While the special case of a Markov model allows for a solid error-theory based on the probabilistic interpretation of the model, ${ }^{72}$ this is an open topic here and will have to be treated in the future.

APPENDIX A

Propagators of Reversible Processes

In the following, we explain in more detail the properties of the dynamical propagator $\mathscr{P}(\tau)$, as introduced in section 2 .
Stationary Density. For any time-homogeneous propagator, there exists at least one stationary density $|\pi(x)\rangle$, which does not change under the action of the operator: $\mathcal{P}(\tau)|\pi(x)\rangle=$ $|\pi(x)\rangle$. Another way of looking at this equation is to say that $|\pi(x)\rangle$ is an eigenfunction of $\mathcal{P}(\tau)$ with eigenvalue $\lambda_{1}=1$. It is guaranteed that $\pi(x) \geq 0$ everywhere as the transfer density is normalized. We additionally assume that $\pi(x)>0$. In molecular systems, $\pi(x)$ is a Boltzmann density and $\pi(x)>0$ is obtained when the temperature is nonzero and the energy is finite for all molecular configurations.

Bound Eigenvalue Spectrum. The eigenvalue $\lambda_{1}=1$ always exists for any propagator. It is also the eigenvalue with the largest absolute value $\left|\lambda_{i}\right| \leq 1$; that is, the eigenvalue spectrum of $\mathcal{P}(\tau)$ is bound from above by the value 1 . This is due to the fact that the transfer density is normalized

$$
\begin{equation*}
\int_{X} p(x, y, \tau) \mathrm{d} y=1 \tag{59}
\end{equation*}
$$

That is, the probability of going from state $x_{t}=x$ to anywhere 799 in the state space (including x) during time τ has to be $1 .{ }^{73,74} 800$

Ergodicity. If the dynamics of the molecule are ergodic, then 801 λ_{1} is nondegenerate. As a consequence, there is only one 802 unique stationary density $\pi(x)$ associated to $\mathcal{P}(\tau)$.

Reversibility. If the dynamics of the individual molecules in 804 the ensemble occur under equilibrium conditions, they fulfill 805 reversibility (also sometimes called "detailed balance" or "micro- 806 reversibility") with respect to the stationary distribution $\pi \quad 807$

$$
\begin{equation*}
\pi(x) p(x, y ; \tau)=\pi(y) p(y, x ; \tau) \quad \forall x, y \tag{60}
\end{equation*}
$$

Equation 60 implies that if the ensemble is in equilibrium, that is, 809 its systems are distributed over the state space according to $|\pi(x)\rangle$, 810 the number of systems going from state x to state y during time $\tau 811$ is the same as the number of systems going from y to x. Or, the 812 density flux from x to y is the same as in the opposite direction, 813 and this is true for all state pairs $\{x, y\}$. For reversible processes, the 814 stationary density becomes an equilibrium density and is equal to 815 the Boltzmann distribution. In the following, we will only consider 816 operators of reversible processes.

A consequence of reversibility is that λ_{1} is the only eigenvalue 818 with absolute value 1 . Together with the previous properties, 819 the eigenvalues can be sorted by their absolute value

$$
\begin{equation*}
\left|\lambda_{1}\right|=1>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \ldots \tag{61}
\end{equation*}
$$

Self-adjoint Operator. Another consequence of reversibility 822 is self-adjointness of the propagator, that is,

$$
\begin{equation*}
\langle f| \mathcal{P}(\tau)|g\rangle_{\pi^{-1}}=\langle g| \mathcal{P}(\tau)|f\rangle_{\pi^{-1}} \tag{62}
\end{equation*}
$$

with respect to the weighted scalar product $\cdot\langle\cdot \mid \cdot\rangle_{\pi}{ }^{-1}$
825

$$
\begin{equation*}
\langle f \mid g\rangle \pi^{-1}=\int_{X} \overline{g(x)} \pi^{-1}(x) f(x) \mathrm{d} x \tag{63}
\end{equation*}
$$

and the norm

$$
\begin{equation*}
|f|=\sqrt{\langle f \mid f\rangle_{\pi^{-1}}} \tag{64}
\end{equation*}
$$

where $\pi^{-1}(x)=1 / \pi(x)$ is the reciprocal function of $\pi(x)$ and 829 the bar denotes complex conjugation. This is verified directly: 830

$$
\begin{align*}
\left\langle\mathcal{P}(\tau) f \mid g_{\pi^{-1}}\right\rangle & =\int_{X}\left[\int_{X} p(x, y, \tau) f(x) \mathrm{d} x\right] \pi^{-1}(y) g(y) \mathrm{d} y \tag{65}\\
& =\int_{X}\left[\int_{X} p(y, x, \tau) \frac{\pi(y)}{\pi(x)} f(x) \mathrm{d} x\right] \pi^{-1}(y) g(y) \mathrm{d} y \tag{66}\\
& =\int_{X} \int_{X} p(y, x, t) f(x) \pi^{-1}(x) g(y) \mathrm{d} y \mathrm{~d} x \tag{67}\\
& =\int_{X} f(x) p^{-1}(x)\left[\int_{X} p(y, x, t) g(y) \mathrm{d} y\right] \mathrm{d} x \tag{68}\\
& =f \mid \mathcal{P}(\tau) g_{\pi^{-1}} \tag{69}
\end{align*}
$$

In the second line, we have used reversibility (eq 60) to 831 replace $p(x, y, \tau)$ by $p(y, x, \tau) \pi(y) / \pi(x)$. Note that we could omit 832 the complex conjugate in eq 63 because $f, \mathcal{P}(\tau)$, and g are real- 833 valued functions. Self-adjointness of $\mathcal{P}(\tau)$ implies that its 834 eigenvalues are real-valued, and its eigenfunctions form a 835 complete basis of

$$
\mathbb{R}^{3 N}
$$

which is orthonormal with respect to the weighted scalar 837 product $\cdot\langle\mid\rangle_{\pi^{-1}}$

$$
\begin{equation*}
\left\langle l_{\alpha} \mid l_{\beta}\right\rangle_{\pi^{-1}}=\delta_{\alpha \beta} \tag{}
\end{equation*}
$$

Comparison to the QM Hamilton Operator. With these 840 properties of the propagator, eq 6 can be compared to the 841

842 stationary Schrödinger equation $\mathcal{H}|\chi=E| \chi\rangle$. Both equations

APPENDIX B

Variational Principle

The variational principle for propagators is derived and discussed in detail in ref 65 . We expand a trial function in terms of the eigenfunctions of $\mathcal{P}(\tau)$

$$
\begin{equation*}
|f\rangle=\sum_{\alpha} c_{\alpha}\left|l_{\alpha}\right\rangle \tag{71}
\end{equation*}
$$

86 where the α th expansion coefficients is given as

$$
\begin{equation*}
c_{\alpha}=\langle l a \mid f\rangle_{\pi^{-1}} \tag{72}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle f \mid f_{\pi^{-1}}\right\rangle=\sum_{\alpha} \sum_{\beta} c_{\alpha} c_{\beta}\left\langle l_{\alpha} \mid l_{\beta}\right\rangle_{\pi^{-1}}=\sum_{\alpha} c_{\alpha}^{2} \tag{73}
\end{equation*}
$$

870 We therefore require that $|f\rangle$ is normalized

$$
\begin{equation*}
\langle f \mid f\rangle_{\pi^{-1}}=1 \tag{74}
\end{equation*}
$$

872 With this, an upper bound for the following expression can be 3 found

$$
\begin{align*}
\langle f| \mathcal{P}(\tau) \mid f_{\pi^{-1}} & =\sum_{\alpha} \sum_{\beta} c_{\alpha} c_{\beta}\left\langle l_{\alpha}\right| \mathcal{P}(\tau)\left|l_{\beta}\right\rangle_{\pi^{-1}} \tag{75}\\
& =\sum_{\alpha} \sum_{\beta} c_{\alpha} c_{\beta} \lambda_{\beta}\left\langle l_{\alpha} \mid l_{\beta}\right\rangle_{\pi^{-1}} \tag{76}\\
& =\sum_{\alpha} c_{\alpha}^{2} \lambda_{\alpha} \tag{77}\\
& \leq \sum_{\alpha} c_{\alpha}^{2} \lambda_{1}=\langle f \mid f\rangle_{\pi^{-1}} \lambda_{1}=1 \tag{78}
\end{align*}
$$

4 and hence

$$
\begin{equation*}
\lambda_{1}=1 \geq\langle f| \mathcal{P}(\tau)|f\rangle_{\pi^{-1}} \tag{79}
\end{equation*}
$$

The above functional of any trial function is smaller than or 877 equal to one, where the equality only holds if and only if $878|f\rangle=\left|l_{1}\right\rangle$.
879 Furthermore, from the equations above it directly follows 880 that for a function f_{i} that is orthogonal to eigenfunctions $881\left|l_{1}\right\rangle, \ldots,\left|l_{i-1}\right\rangle$:

$$
\begin{equation*}
\left\langle f_{i} \mid l_{j}\right\rangle_{\pi^{-1}}=0 \quad \forall j=1, \ldots, i-1 \tag{80}
\end{equation*}
$$

the variational principle results in

$$
\begin{equation*}
\langle f| \mathcal{P}(\tau)|f\rangle_{\pi^{-1}} \leq \lambda_{i} \tag{81}
\end{equation*}
$$

APPENDIX C

Method of Linear Variation

Given the variational principle for the transfer operator (eq 79), 887 the function $|f\rangle$ can be linearly expanded using a basis of n basis 888 functions $\left\{\mid \varphi_{i}\right\}_{i=1}^{n}$

$$
\begin{equation*}
f=\sum_{i=1}^{n} a_{i}\left|\varphi_{i}\right\rangle \tag{82}
\end{equation*}
$$

where a_{i} are the expansion coefficients. All basis functions are 891 real functions, but the basis set is not necessarily orthonormal. 892 Hence, the expansion coefficients are real numbers. In the 893 method of linear variation, the expansion coefficients a_{i} are 894 varied such that the right-hand side of eq 79 becomes maximal, 895 while the basis functions are kept constant. The derivation leads 896 to matrix formulation of eq 6 . Solving the corresponding matrix 897 diagonalization problem, one obtains the first n eigenvectors of 898 $\mathcal{P}(\tau)$ expressed in the basis $\left\{\left|\varphi_{i}\right\rangle\right\}_{i} \stackrel{n}{1}$ and the associated eigenvalues. Inserting eq 16 into eq 79 obtains

$$
\begin{align*}
1 & \geq\left\langle\sum_{i=1}^{n} a_{i} \varphi_{i}\right| \mathcal{P}\left|\sum_{j=1}^{n} a_{j} \varphi_{j}\right\rangle_{\pi^{-1}} \tag{83}\\
& =\sum_{i, j=1}^{n} a_{i} a_{j}\langle\varphi| \mathcal{P}\left|\varphi_{j}\right\rangle_{\pi^{-1}} \tag{84}\\
& =\sum_{i, j=1}^{n} a_{i} a_{j}\langle\varphi| \mathcal{P}\left|\varphi_{j}\right\rangle_{\pi^{-1}} \tag{85}
\end{align*}
$$

where we have introduced the matrix element of the correlation 900 matrix \mathbf{C}

$$
\begin{equation*}
C_{i j}=\left\langle\varphi_{i}\right| \mathcal{P}\left|\varphi_{j}\right\rangle_{\pi^{-1}} \tag{86}
\end{equation*}
$$

The maximum of the expression of right-hand side in eq 79 is 903 found by varying the coefficients a_{i}, that is,

$$
\begin{align*}
\frac{\partial}{\partial a_{k}}\langle f| \mathcal{P}|f\rangle_{\pi^{-1}} & =\frac{\partial}{\partial a_{k}} \sum_{i j=1}^{n} a_{i} a_{j} C_{i j} \tag{87}\\
& =0 \quad \forall k=1,2, \ldots n \tag{88}
\end{align*}
$$

under the constraint that $|f\rangle$ is normalized

$$
\begin{align*}
\langle f \mid f\rangle_{\pi^{-1}} & =\sum_{i j=1}^{n} a_{i} a_{j}\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle_{\pi^{-1}}=\sum_{i j=1}^{n} a_{i} a_{j} S_{i j} \tag{89}\\
& =1 \tag{90}
\end{align*}
$$

$S_{i j}$ is the matrix element of the overlap matrix \mathbf{S} defined as 906

$$
\begin{equation*}
S_{i j}=\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle_{\pi^{-1}}=\left\langle\varphi_{j} \mid \varphi_{i}\right\rangle_{\pi^{-1}} \tag{91}
\end{equation*}
$$

To incorporate the constraint in the optimization problem, 908 we make use of the method of Lagrange multipliers

$$
\begin{align*}
\mathcal{L} & =\sum_{i j=1}^{n} a_{i} a_{j}\left\langle\varphi_{i}\right| \mathcal{P}\left|\varphi_{j}\right\rangle_{\pi^{-1}} \tag{92}\\
& -\lambda\left[\sum_{i j=1}^{n} a_{i} a_{j}\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle_{\pi^{-1}}-1\right] \tag{93}\\
& =\sum_{i j=1}^{n} a_{i} a_{j} C_{i j}-\lambda\left[\sum_{i j=1}^{n} a_{i} a_{j} S_{i j}-1\right] \tag{94}
\end{align*}
$$

The variational problem then is

$$
\begin{align*}
\frac{1}{2} \frac{\partial}{\partial a_{k}} L & =\frac{1}{2} \sum_{j=1}^{n} a_{j} C_{i j}+\frac{1}{2} \sum_{i=1}^{n} a_{i} C_{i j} \tag{95}\\
& -\frac{1}{2} \lambda\left[\sum_{j=1}^{n} a_{j} S_{i j}+\sum_{i=1}^{n} a_{i} S_{i j}\right] \tag{96}\\
& =\sum_{i=1}^{n} a_{i} C_{i j}-\lambda \sum_{i=1}^{n} a_{i} S_{i j} \tag{97}\\
& =0 \tag{98}\\
& \forall k=1,2, \ldots n \tag{99}
\end{align*}
$$

915 which is a generalized eigenvalue problem, and identical to

$$
\begin{equation*}
\mathbf{S}^{-1} \mathbf{C} \mathbf{a}=\lambda \mathbf{a} \tag{101}
\end{equation*}
$$

where a is a vector which contains the coefficients a_{i}. The solutions of eq 101 are orthonormal with respect to an inner product which is weighted by the overlap matrix \mathbf{S} :

$$
\begin{equation*}
\left\langle\mathbf{a}^{f}\right| S|\mathbf{a}\rangle^{g}=\delta_{f g} \tag{102}
\end{equation*}
$$

where $\delta_{f g}$ is the Kronecker delta. Then, any two functions $f=$ $\sum_{i} f_{i}^{f}\left|\varphi_{i}\right\rangle$ and $g=\sum_{i} f_{i}^{f}\left|\varphi_{i}\right\rangle$ are orthonormal with respect to the π^{-1}-weighted inner product, as it is expected for the eigenfunctions of the transfer operator

$$
\begin{align*}
\langle f \mid g\rangle_{\pi^{-1}} & =\left\langle\sum_{i} a_{i}^{f} \varphi_{i} \mid \sum_{j} a_{j}^{g} \varphi_{j}\right\rangle_{\pi^{-1}} \tag{103}\\
& =\left\langle\mathbf{a}^{f}\right| S\left|\mathbf{a}^{g}\right\rangle \tag{104}\\
& =\delta_{f g} \tag{105}
\end{align*}
$$

APPENDIX D

Left Eigenvectors and Stationary Properties

 approximates the stationary distribution even for basis sets that do not form a partition of unity.Let us assume we have a sequence of basis sets $\left\{\chi_{i}\right\}_{j}$, such that the corresponding first eigenvalue $\lambda_{1 j}$ converges to 1 . Let us denote the local densities of basis set j by Z_{i}^{j}, the total density from eq 47 by C^{j}, and the entries of the normalized first left eigenvector of basis set j by b_{i}^{j}. We show

$$
\begin{equation*}
b_{i}^{j}-\frac{Z_{i}^{j}}{C^{j}} \rightarrow 0 \tag{106}
\end{equation*}
$$

as $j \rightarrow \infty$, or in other words, 936
$b_{i}^{j} C^{j}-Z_{i}^{j} \rightarrow 0$
(107) 937

To do so, we multiply by the inverse partition function $1 / Z 938$ and rewrite this expression as

$$
\begin{align*}
\frac{1}{Z}\left(b_{i}^{j} \mathrm{C}^{j}-Z_{i}^{j}\right) & =\frac{1}{Z} \frac{\sum_{k} a_{k}^{1 j} s_{j k}^{j}}{\left(\sum_{l, k} a_{k}^{1 j} s_{l k}^{j}\right)} \int \sum_{l} \chi_{l j} \mathrm{e}^{-v(x)}-\frac{1}{Z} \int \chi_{i j} \mathrm{e}^{-v(x)} \tag{108}\\
& =\frac{\sum_{k} a_{k}^{1 j} \chi_{i j} \mid \chi_{k j \pi}}{\sum_{l, k} a_{k}^{1 j} \chi_{l j} \mid \chi_{k j \pi}}\left\langle\sum_{l} \chi_{l j} \mid 1\right\rangle_{\pi}-\left\langle\chi_{i j} \mid 1\right\rangle_{\pi} \tag{109}
\end{align*}
$$

We can use eq 48 to pull the summation over k into the second 940 argument of the brackets:

$$
\begin{equation*}
\frac{1}{Z}\left(b_{i}^{j} C^{j}-Z_{i}^{j}\right)=\frac{\left\langle\chi_{i j} \mid r_{1 j \pi}\right\rangle_{\pi}}{\left\langle\sum_{l} \chi_{l j} \mid 1\right\rangle_{\pi}}\left\langle\sum_{l} \chi_{l j} \mid 1\right\rangle_{\pi}-\left\langle\chi_{i j} \mid 1\right\rangle_{\pi} \tag{942}
\end{equation*}
$$

From the convergence of the eigenvalue $\lambda_{1 j}$ toward 1, it 943 follows that the approximate first eigenfunction $\left|r_{1 j}\right\rangle$ converges 944 to the true first eigenfunction, the constant function with value 945 one, in the scace L_{π}^{2}. This can be shown using an orthonormal 946 basis expansion. Consequently, we can use the Cauchy- 947 Schwarz inequality to estimate the expression

$$
\begin{align*}
& \left|\left\langle\chi_{i j} \mid r_{1 j}\right\rangle_{\pi}-\left\langle\chi_{i j} \mid 1\right\rangle_{\pi}\right|=\left|\left\langle\chi_{i j} \mid r_{1 j}-1\right\rangle_{\pi}\right| \tag{949}\\
& \leq\left\|\chi_{i j}| || | r_{1 j}-1\right\| \tag{112}
\end{align*}
$$

As the second term tends to zero by the L^{2}-convergence, the 951 complete expression likewise decays to zero, provided that the 952 L^{2}-norms of the basis functions remain bounded, which is 953 reasonable to assume. By a similar argument, we can show that 954 the remaining fraction

$$
\begin{equation*}
\frac{\left\langle\sum_{l} \chi_{l j} \mid 1\right\rangle_{\pi}}{\left\langle\sum_{l} x_{i j} r_{1 j}\right\rangle_{\pi}} \tag{113}
\end{equation*}
$$

converges to 1 , provided that the L^{2}-norm of the sum of all 957 basis functions also remains bounded. Combining these two 958 observations, we can conclude that eq 110 tends to 0 , which 959 was to be shown.

APPENDIX E

Simulation Setups

962
Alanine dipeptide. We performed all-atom molecular 963 dynamics simulations of acetyl-alanine-methylamide (Ac-Ala- 964 NHMe), referred to as alanine dipeptide in the text, in explicit 965 water using the GROMACS 4.5.5 ${ }^{75}$ simulation package, the 966 AMBER ff-99SB-ILDN force field, ${ }^{71}$ and the TIP3P water 967 model. ${ }^{76}$ The simulations were performed in the canonical 968 ensemble at a temperature of 300 K . The energy-minimized 969 starting structure of Ac-Ala-NHMe was solvated into a cubic 970 box with a minimum distance between solvent and box wall of 971 1 nm , corresponding to a box volume of $2.72 \mathrm{~nm}^{3}$ and 651 water 972 molecules. After an initial equilibration of $100 \mathrm{ps}, 20$ production 973 runs of 200 ns each were performed, yielding a total simulation 974 time of $4 \mu \mathrm{~s}$. Covalent bonds to hydrogen atoms were constrained 975 using the LINCS algorithm ${ }^{77}$ (lincs_iter = 1, lincs_order = 4), 976 allowing for an integration time step of 2 fs . The leapfrog 977 integrator was used. The temperature was maintained by the 978 velocity-rescale thermostat ${ }^{78}$ with a time constant of 0.01 ps. 979 Lennard-Jones interactions were cut off at 1 nm . Electrostatic 980 interactions were treated by the Particle-Mesh Ewald (PME) 981

982 algorithm ${ }^{79}$ with a real space cutoff of 1 nm , a grid spacing of 9830.15 nm , and an interpolation order of 4 . Periodic boundary 984 conditions were applied in the x-, y-, and z-direction. The 985 trajectory data was stored every 1 ps. $23.6 \mathrm{~nm}^{3}$, with 7647 pre-equilibrated TIP3P water molecules 994 First, an equilibration run of 500 ps in the NVT ensemble with 995 full position restraints, using the velocity-rescale thermostat, 996 was carried out. This was followed by a 500 ps NPT 997 equilibration run. The temperature was set to $T=300 \mathrm{~K}$. 998 The equilibration run was followed by a 500 ns production run, 999 again at $T=300 \mathrm{~K}$. Two temperature coupling groups were 1000 used with a velocity-rescale thermostat and a time constant of $10010.01 \mathrm{ps} .^{78}$ Periodic boundary conditions were applied in the x-, $1002 y$-, and z-direction. For the long-range electrostatic interaction 1003 PME was used with a pme-order of 4 and a Fourier grid spacing 1004 of 0.15 nm . Covalent bonds to hydrogen bonds were 1005 constrained using the LINCS algorithm, ${ }^{77}$ allowing for a 2 fs 1006 time step. A leapfrog integrator was used. Data was saved every 10071 ps , resulting in 5×10^{5} data frames. Six independent 1008 simulations from the same equilibrated configuration were 1009 carried out resulting in $3 \mu \mathrm{~s}$ total data.

1010 AUTHOR INFORMATION

1011 Corresponding Authors

1012 *E-mail: bettina.keller@fu-berlin.de.
1013 *E-mail: frank.noe@fu-berlin.de.

4 Notes

1015 The authors declare no competing financial interest.

1016

ACKNOWLEDGMENTS

1017 The authors thank Francesca Vitalini for providing the 1018 molecular dynamics simulation of alanine dipeptide.

1019 REFERENCES

1020 (1) Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, 1021 P. Mol. Biol. Cell, 5th ed.; Galand Science: New York, 2008.
1022 (2) Elber, R. Simulations of allosteric transitions. 2011; http://www. 1023 ncbi.nlm.nih.gov/pubmed/21333527(accessed Jan. 9, 2014).
1024 (3) Verhey, K. J.; Kaul, N.; Soppina, V. Annu. Rev. Biophys. 2011, 40, 1025 267-288.
1026 (4) Dunkle, J. a.; Cate, J. H. D. Annu. Rev. Biophys. 2010, 39, 2271027244.

1028 (5) Keller, B.; Daura, X.; Van Gunsteren, W. F. J. Chem. Phys. 2010, 1029 132, 074110.
1030 (6) Krivov, S. V.; Karplus, M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1031 14766-14770.
1032 (7) Wales, D. J. Energy Landscapes, 1st ed.; Cambridge University 1033 Press: Cambridge, 2003.
1034 (8) Noé, F.; Fischer, S. Curr. Opin. Struc. Biol. 2008, 18, 154-162.
1035 (9) Karpen, M. E.; Tobias, D. J.; Brooks, C. L. Biochemistry 1993, 32, 1036 412-420.
1037 (10) Hubner, I. A.; Deeds, E. J.; Shakhnovich, E. I. Proc. Natl. Acad. 1038 Sci. U.S.A. 2006, 103, 17747-17752.
1039 (11) Buchete, N.; Hummer, G. J. Phys. Chem. B 2008, 112, 605710406069.

1041 (12) Rao, F.; Caflisch, A. J. Mol. Biol. 2004, 342, 299-306.
1042 (13) Muff, S.; Caflisch, A. Proteins 2007, 70, 1185-1195.
(14) de Groot, B.; Daura, X.; Mark, A.; Grubmüller, H. J. Mol. Biol. 1043 2001, 301, 299-313.
(15) Schultheis, V.; Hirschberger, T.; Carstens, H.; Tavan, P. J. Chem. 1045 Theory Comp. 2005, 1, 515-526.
(16) Pan, A. C.; Roux, B. J. Chem. Phys. 2008, 129, 064107.
(17) Weber, M. Improved Perron Cluster Analysis, Technical Report 1048 03-04; Konrad-Zuse-Zentrum für Informationstechnik Berlin: Berlin- 1049 Dahlem, Germany, 2003. 1050
(18) Noé, F.; Krachtus, D.; Smith, J. C.; Fischer, S. J. Chem. Theory 1051 Comput. 2006, 2, 840-857. 1052
(19) Noé, F.; Oswald, M.; Reinelt, G.; Fischer, S.; Smith, J. C. 1053 Multiscale Model. Simul. 2006, 5, 393-419. 1054
(20) Noé, F.; Horenko, I.; Schütte, C.; Smith, J. C. J. Chem. Phys. 1055 2007, 126, 155102. 1056
(21) Chodera, J. D.; Dill, K. A.; Singhal, N.; Pande, V. S.; Swope, W. 1057 C.; Pitera, J. W. J. Chem. Phys. 2007, 126, 155101. 1058
(22) Swope, W. C.; Pitera, J. W.; Suits, F. J. Phys. Chem. B 2004, 108, 1059 6571-6581.
1060
(23) Swope, W. C.; Pitera, J. W.; Suits, F. J. Phys. Chem. B 2004, 108, 1061 6571-6581. 1062
(24) Buchete, N.-V.; Hummer, G. J. Phys. Chem. B 2008, 112, 6057- 1063 6069.
1064
(25) Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; 1065 Chodera, J. D.; Schütte, C.; Noé, F. J. Chem. Phys. 2011, 134, 174105. 1066
(26) E, W.; Vanden-Eijnden, E. J. Stat. Phys. 2006, 123, 503-523. 1067
(27) Noé, F.; Schütte, C.; Vanden-Eijnden, E.; Reich, L.; Weikl, T. R. 1068 Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19011-6. 1069
(28) Deuflhard, P.; Weber, M. Linear Algebra and Its Applications 1070 2005, 398, 161-184.
(29) Kube, S.; Weber, M. J. Chem. Phys. 2007, 126, 024103.1072
(30) Chodera, J. D.; Singhal, N.; Pande, V. S.; Dill, K.; Swope, W. C. 1073
J. Chem. Phys. 2007, 126, 155101.
(31) Noé, F.; Horenko, I.; Schütte, C.; Smith, J. C. J. Chem. Phys. 1075 2007, 126, 155102. 1076
(32) Ruzhytska, S.; Jacobi, M. N.; Jensen, C. H.; Nerukh, D. J. Chem. 1077 Phys. 2010, 133, 164102. 1078
(33) Bowman, G. R.; Pande, V. S. Proc. Natl. Acad. Sci. U.S.A. 2010, 1079 107, 10890-10895.

1080
(34) Noé, F.; Doose, S.; Daidone, I.; Löllmann, M.; Sauer, M.; 1081 Chodera, J. D.; Smith, J. C. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 1082 4822-4827.
(35) Keller, B. G.; Prinz, J.-H.; Noé, F. Chem. Phys. 2012, 396, 92- 1084 107.

1085
(36) Keller, B.; Hünenberger, P.; van Gunsteren, W. F. J. Chem. 1086 Theory Comput. 2011, 7, 1032-1044.
(37) Singhal, N.; Pande, V. S. J. Chem. Phys. 2005, 123, 204909.
(38) Noé, F. J. Chem. Phys. 2008, 128, 244103.
(39) Chodera, J. D.; Noé, F. J. Chem. Phys. 2010, 133, 105102. 1090
(40) Bowman, G. R.; Beauchamp, K. A.; Boxer, G.; Pande, V. S. J. 1091

Chem. Phys. 2009, 131, 124101.
(41) Pande, V. S.; Beauchamp, K.; Bowman, G. R. Methods 2010, 52, 1093 99-105.

1094
(42) Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.; 1095 Haque, I. S.; Pande, V. S. J. Chem. Theory Comput. 2011, 7, 3412- 1096 3419.
(43) Senne, M.; Trendelkamp-Schroer, B.; Mey, A. S. J. S.; Schütte, 1098 C.; Noé, F. J. Chem. Theory Comput. 2012, 8, 2223-2238. 1099
(44) Muff, S.; Caflisch, A. Proteins: Struct. Funct. Bioinf. 2007, 70, 1100 1185-1195. 1101
(45) Lane, T. J.; Bowman, G. R.; Beauchamp, K.; Voelz, V. a.; Pande, 1102 V. S. J. Am. Chem. Soc. 2011, 133, 18413-18419. 1103
(46) Noé, F.; Schütte, C.; Vanden-Eijnden, E.; Reich, L.; Weikl, T. 1104 Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 19011-19016. 1105
(47) Beauchamp, K. A.; McGibbon, R.; Lin, Y.-S.; Pande, V. S. Proc. 1106 Natl. Acad. Sci. U.S.A. 2012, 109, 17807-17813. 1107
(48) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, 1108 R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan, 1109 Y.; Wriggers, W. Science 2010, 330, 341-346.

1111 (49) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. Science 1112 2011, 334, 517-520.
1113 (50) Sadiq, S. K.; Noé, F.; De Fabritiis, G. Proc. Natl. Acad. Sci. U.S.A. 1114 2012, 109, 20449-20454.
1115 (51) Buch, I.; Giorgino, T.; De Fabritiis, G. Proc. Natl. Acad. Sci. 1116 U.S.A. 2011, 108, 10184-10189.
1117 (52) Kelley, N. W.; Vishal, V.; Krafft, G. A.; Pande, V. S. J. Chem. 1118 Phys. 2008, 129, 214707.
1119 (53) Nerukh, D.; Jensen, C. H.; Glen, R. C. J. Chem. Phys. 2010, 132, 1120084104.

1121 (54) Jensen, C. H.; Nerukh, D.; Glen, R. C. J. Chem. Phys. 2008, 128, 1122115107.

1123 (55) Sarich, M.; Noé, F.; Schütte, C. Multiscale Model. Simul. 2010, 8, 1124 1154-1177.
1125 (56) Altis, A.; Nguyen, P. H.; Hegger, R.; Stock, G. J. Chem. Phys. 1126 2007, 126, 244111.
1127 (57) Schwantes, C.; Pande, V. J. Chem. Theory Comput. 2013, 9, 1128 2000-2009.
1129 (58) Pérez-Hernández, G.; Paul, F.; Giorgino, T.; De Fabritiis, G.; 1130 Noé, F. J. Chem. Phys. 2013, 139, 015102.
1131 (59) Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. J. Comput. 1132 Phys. 1999, 151, 146-168.
1133 (60) Rains, E. K.; Andersen, H. C. J. Chem. Phys. 2010, 133, 144113.
1134 (61) Weber, M. Ph.D. thesis, Freie Universitaet Berlin, Berlin, 2006.
1135 (62) Röblitz, S. Ph.D. thesis, Freie Universitaet Berlin, Berlin, 2009.
1136 (63) Haack, F.; Röblitz, S.; Scharkoi, O.; Schmidt, B. AIP Conf. Proc. 1137 2010, 1281, 1585-1588.
1138 (64) Schütte, C.; Noé, F.; Lu, J.; Sarich, M.; Vanden-Eijnden, E. J. 1139 Chem. Phys. 2011, 134, 204105.
1140 (65) Noé, F.; Nüske, F. SIAM Multiscale Model. Simul. 2013, 11, 1141 635-655.
1142 (66) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry, 1st ed.; 1143 Dover Publications: Mineola, NY, 1996; pp 31-38.
1144 (67) Noé, F.; Doose, S.; Daidone, I.; Löllmann, M.; Chodera, J.; 1145 Sauer, M.; Smith, J. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 4822-4827. 1146 (68) Lindner, B.; Yi, Z.; Prinz, J.-H.; Smith, J.; Noé, F. J. Chem. Phys. 1147 2013, 139, 175101.
1148 (69) Zheng, Y.; Lindner, B.; Prinz, J.-H.; Noé, F.; Smith, J. J. Chem. 1149 Phys. 2013, 139, 175102.
1150 (70) Vanden-Eijnden, E.; Venturoli, M. J. Chem. Phys. 2009, 130, 1151194101.

1152 (71) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, 1153 J. L.; Dror, R. O.; Shaw, D. E. Proteins 2010, 78, 1950-1958.
1154 (72) Prinz, J.-H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; 1155 Chodera, J.; Schütte, C.; Noé, F. J. Chem. Phys. 2011, 134, 174105.
1156 (73) Deuflhard, P.; Huisinga, W.; Fischer, A.; Schütte, C. Linear 1157 Algebra and Its Applications 2000, 315, 39-59.
1158 (74) MacCluer, C. R. SIAM Rev. 2000, 42, 487-498.
1159 (75) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. 1160 E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701-1718.
1161 (76) Kritzer, J. A.; Tirado-Rives, J.; Hart, S. A.; Lear, J. D.; Jorgensen, 1162 W. L.; Schepartz, A. J. Am. Chem. Soc. 2005, 127, 167-178.
1163 (77) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. 1164 Comput. Chem. 1997, 18, 1463-1472.
1165 (78) Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 1166014101.

1167 (79) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 1168 10089-10092.

[^0]: Received: October 21, 2013

