1,812 research outputs found
Theoretical fits of the \delta Cephei light, radius and radial velocity curves
We present a theoretical investigation of the light, radius and radial
velocity variations of the prototype Cephei. We find that the best fit
model accounts for luminosity and velocity amplitudes with an accuracy better
than , and for the radius amplitude with an accuracy of .
The chemical composition of this model suggests a decrease in both helium (0.26
vs 0.28) and metal (0.01 vs 0.02) content in the solar neighborhood. Moreover,
distance determinations based on the fit of light curves agree at the
level with the trigonometric parallax measured by the Hubble Space
Telescope (HST). On the other hand, distance determinations based on angular
diameter variations, that are independent of interstellar extinction and of the
-factor value, indicate an increase of the order of 5% in the HST parallax.Comment: accepted for publication on ApJ Letter
Classical Cepheid Pulsation Models: IX. New Input Physics
We constructed several sequences of classical Cepheid envelope models at
solar chemical composition () to investigate the dependence of
the pulsation properties predicted by linear and nonlinear hydrodynamical
models on input physics. To study the dependence on the equation of state (EOS)
we performed several numerical experiments by using the simplified analytical
EOS originally developed by Stellingwerf and the recent analytical EOS
developed by Irwin. Current findings suggest that the pulsation amplitudes as
well as the topology of the instability strip marginally depend on the adopted
EOS.
We also investigated the dependence of observables predicted by theoretical
models on the mass-luminosity (ML) relation and on the spatial resolution
across the Hydrogen and the Helium partial ionization regions. We found that
nonlinear models are marginally affected by these physical and numerical
assumptions. In particular, the difference between new and old models in the
location as well as in the temperature width of the instability strip is on
average smaller than 200 K. However, the spatial resolution somehow affects the
pulsation properties. The new fine models predict a period at the center of the
Hertzsprung Progression (9.84 days) that reasonably agree with
empirical data based on light curves ( days;
\citealt{mbm92}) and on radial velocity curves ( days;
\citealt{mall00}), and improve previous predictions by Bono, Castellani, and
Marconi (2000, hereinafter BCM00).Comment: 35 pages, 7 figures. Accepted for publication in the Astrophysical
Journa
Improving the mass determination of Galactic Cepheids
We have selected a sample of Galactic Cepheids for which accurate estimates
of radii, distances, and photometric parameters are available. The comparison
between their pulsation masses, based on new Period-Mass-Radius (PMR)
relations, and their evolutionary masses, based on both optical and NIR
Color-Magnitude (CM) diagrams, suggests that pulsation masses are on average of
the order of 10% smaller than the evolutionary masses. Current pulsation masses
show, at fixed radius, a strongly reduced dispersion when compared with values
published in literature.The increased precision in the pulsation masses is due
to the fact that our predicted PMR relations based on nonlinear, convective
Cepheid models present smaller standard deviations than PMR relations based on
linear models. At the same time, the empirical radii of our Cepheid sample are
typically accurate at the 5% level. Our evolutionary mass determinations are
based on stellar models constructed by neglecting the effect of mass-loss
during the He burning phase. Therefore, the difference between pulsation and
evolutionary masses could be intrinsic and does not necessarily imply a problem
with either evolutionary and/or nonlinear pulsation models. The marginal
evidence of a trend in the difference between evolutionary and pulsation masses
when moving from short to long-period Cepheids is also briefly discussed. The
main finding of our investigation is that the long-standing Cepheid mass
discrepancy seems now resolved at the 10% level either if account for canonical
or mild convective core overshooting evolutionary models.Comment: 14 pages, 4 postscript figures, accepted for publication on ApJ
Letter
Chromatin to Clinic: The Molecular Rationale for PARP1 Inhibitor Function.
Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors were recently shown to have potential clinical impact in a number of disease settings, particularly as related to cancer therapy, treatment for cardiovascular dysfunction, and suppression of inflammation. The molecular basis for PARP1 inhibitor function is complex, and appears to depend on the dual roles of PARP1 in DNA damage repair and transcriptional regulation. Here, the mechanisms by which PARP-1 inhibitors elicit clinical response are discussed, and strategies for translating the preclinical elucidation of PARP-1 function into advances in disease management are reviewed
On the helium content of Galactic globular clusters via the R parameter
We estimate the empirical R parameter in 26 Galactic Globular Clusters
covering a wide metallicity range, imaged by WFPC2 on board the HST. The
improved spatial resolution permits a large fraction of the evolved stars to be
measured and permits accurate assessment of radial populaton gradients and
completeness corrections. In order to evaluate both the He abundance and the He
to metal enrichment ratio, we construct a large set of evolutionary models by
adopting similar metallicities and different He contents. We find an absolute
He abundance which is lower than that estimated from spectroscopic measurements
in HII regions and from primordial nucleosynthesis models. This discrepancy
could be removed by adopting a C12O16 nuclear cross section about a factor of
two smaller than the canonical value, although also different assumptions for
mixing processes can introduce systematical effects. The trend in the R
parameter toward solar metallicity is consistent with an upper limit to the He
to metal enrichment ratio of the order of 2.5.Comment: accepted for pubblication on Ap
The Faint Cepheids of the Small Magellanic Cloud: an evolutionary selection effect?
Two problems about the faintest Small Magellanic Cloud (SMC) Cepheids are
addressed. On one hand evolutionary tracks fail to cross the Cepheid
Instability Strip for the highest magnitudes (i.e. I-mag~17) where Cepheids are
observed; Mass-Luminosity relations (ML) obtained from evolutionary tracks
disagree with Mass-Luminosity relations derived from observations. We find that
the above failures concern models built with standard input physics as well as
with non-standard ones. The present work suggests that towards highest
magnitudes, Cepheids stars undergo a selection effect caused by evolution: only
the most metal poor stars cross the Instability Strip during the ``blue loop''
phase and are therefore the only ones which can be observed at low luminosity.
This solution enables us to reproduce the shape of the lower part of the
Instability Strip and improves the agreement between observed and theoretical
ML-relations. Some issues are discussed, among them Beat Cepheids results argue
strongly in favor of our hypothesis.Comment: 13 pages, 8 figure
Fundamentos que expone Don Mauro Antonio Oller y Bono ... en los autos que sigue con Don Christoual Escaso, y Doña Teresa Domingo y Oller, sobre la succession de los bienes de las mejoras de tercio, y quinto, que dexo Mauro Oller mayor, y pertenecieron, y se radicaron en don Onofre Oller ..
La h. pleg. corresponde al arbol genealógico de la familia OllerPrecede al tít.: Jesus, Maria, JosephSign.: [], A-Q2Port. con orla tip y grab. xil. de la Virgen de los Desamparado
Theoretical models for classical Cepheids. VIII. Effects of helium and heavy elements abundance on the Cepheid distance scale
Previous nonlinear fundamental pulsation models for classical Cepheids with
metal content Z <= 0.02 are implemented with new computations at super-solar
metallicity (Z=0.03, 0.04) and selected choices of the helium-to-metal
enrichment ratio DeltaY/Delta Z. On this basis, we show that the location into
the HR diagram of the Cepheid instability strip is dependent on both metal and
helium abundance, moving towards higher effective temperatures with decreasing
the metal content (at fixed Y) or with increasing the helium content (at fixed
Z). The contributions of helium and metals to the predicted Period-Luminosity
and Period-Luminosity-Color relations are discussed, as well as the
implications on the Cepheid distance scale. Based on these new results, we
finally show that the empirical metallicity correction suggested by Cepheid
observations in two fields of the galaxy M101 may be accounted for, provided
that the adopted helium-to-metal enrichment ratio is reasonably high (Delta
Y/Delta Z ~ 3.5).Comment: 23 pages, including 6 postscript figures, accepted for publication on
Ap
- …