1,812 research outputs found

    Theoretical fits of the \delta Cephei light, radius and radial velocity curves

    Full text link
    We present a theoretical investigation of the light, radius and radial velocity variations of the prototype δ\delta Cephei. We find that the best fit model accounts for luminosity and velocity amplitudes with an accuracy better than 0.8σ0.8\sigma, and for the radius amplitude with an accuracy of 1.7σ1.7\sigma. The chemical composition of this model suggests a decrease in both helium (0.26 vs 0.28) and metal (0.01 vs 0.02) content in the solar neighborhood. Moreover, distance determinations based on the fit of light curves agree at the 0.8σ0.8\sigma level with the trigonometric parallax measured by the Hubble Space Telescope (HST). On the other hand, distance determinations based on angular diameter variations, that are independent of interstellar extinction and of the pp-factor value, indicate an increase of the order of 5% in the HST parallax.Comment: accepted for publication on ApJ Letter

    Classical Cepheid Pulsation Models: IX. New Input Physics

    Full text link
    We constructed several sequences of classical Cepheid envelope models at solar chemical composition (Y=0.28,Z=0.02Y=0.28, Z=0.02) to investigate the dependence of the pulsation properties predicted by linear and nonlinear hydrodynamical models on input physics. To study the dependence on the equation of state (EOS) we performed several numerical experiments by using the simplified analytical EOS originally developed by Stellingwerf and the recent analytical EOS developed by Irwin. Current findings suggest that the pulsation amplitudes as well as the topology of the instability strip marginally depend on the adopted EOS. We also investigated the dependence of observables predicted by theoretical models on the mass-luminosity (ML) relation and on the spatial resolution across the Hydrogen and the Helium partial ionization regions. We found that nonlinear models are marginally affected by these physical and numerical assumptions. In particular, the difference between new and old models in the location as well as in the temperature width of the instability strip is on average smaller than 200 K. However, the spatial resolution somehow affects the pulsation properties. The new fine models predict a period at the center of the Hertzsprung Progression (PHP=9.65P_{HP}=9.65-9.84 days) that reasonably agree with empirical data based on light curves (PHP=10.0±0.5P_{HP}=10.0\pm 0.5 days; \citealt{mbm92}) and on radial velocity curves (PHP=9.95±0.05P_{HP}=9.95\pm 0.05 days; \citealt{mall00}), and improve previous predictions by Bono, Castellani, and Marconi (2000, hereinafter BCM00).Comment: 35 pages, 7 figures. Accepted for publication in the Astrophysical Journa

    Improving the mass determination of Galactic Cepheids

    Get PDF
    We have selected a sample of Galactic Cepheids for which accurate estimates of radii, distances, and photometric parameters are available. The comparison between their pulsation masses, based on new Period-Mass-Radius (PMR) relations, and their evolutionary masses, based on both optical and NIR Color-Magnitude (CM) diagrams, suggests that pulsation masses are on average of the order of 10% smaller than the evolutionary masses. Current pulsation masses show, at fixed radius, a strongly reduced dispersion when compared with values published in literature.The increased precision in the pulsation masses is due to the fact that our predicted PMR relations based on nonlinear, convective Cepheid models present smaller standard deviations than PMR relations based on linear models. At the same time, the empirical radii of our Cepheid sample are typically accurate at the 5% level. Our evolutionary mass determinations are based on stellar models constructed by neglecting the effect of mass-loss during the He burning phase. Therefore, the difference between pulsation and evolutionary masses could be intrinsic and does not necessarily imply a problem with either evolutionary and/or nonlinear pulsation models. The marginal evidence of a trend in the difference between evolutionary and pulsation masses when moving from short to long-period Cepheids is also briefly discussed. The main finding of our investigation is that the long-standing Cepheid mass discrepancy seems now resolved at the 10% level either if account for canonical or mild convective core overshooting evolutionary models.Comment: 14 pages, 4 postscript figures, accepted for publication on ApJ Letter

    Chromatin to Clinic: The Molecular Rationale for PARP1 Inhibitor Function.

    Get PDF
    Poly(ADP-ribose) polymerase 1 (PARP1) inhibitors were recently shown to have potential clinical impact in a number of disease settings, particularly as related to cancer therapy, treatment for cardiovascular dysfunction, and suppression of inflammation. The molecular basis for PARP1 inhibitor function is complex, and appears to depend on the dual roles of PARP1 in DNA damage repair and transcriptional regulation. Here, the mechanisms by which PARP-1 inhibitors elicit clinical response are discussed, and strategies for translating the preclinical elucidation of PARP-1 function into advances in disease management are reviewed

    On the helium content of Galactic globular clusters via the R parameter

    Full text link
    We estimate the empirical R parameter in 26 Galactic Globular Clusters covering a wide metallicity range, imaged by WFPC2 on board the HST. The improved spatial resolution permits a large fraction of the evolved stars to be measured and permits accurate assessment of radial populaton gradients and completeness corrections. In order to evaluate both the He abundance and the He to metal enrichment ratio, we construct a large set of evolutionary models by adopting similar metallicities and different He contents. We find an absolute He abundance which is lower than that estimated from spectroscopic measurements in HII regions and from primordial nucleosynthesis models. This discrepancy could be removed by adopting a C12O16 nuclear cross section about a factor of two smaller than the canonical value, although also different assumptions for mixing processes can introduce systematical effects. The trend in the R parameter toward solar metallicity is consistent with an upper limit to the He to metal enrichment ratio of the order of 2.5.Comment: accepted for pubblication on Ap

    The Faint Cepheids of the Small Magellanic Cloud: an evolutionary selection effect?

    Full text link
    Two problems about the faintest Small Magellanic Cloud (SMC) Cepheids are addressed. On one hand evolutionary tracks fail to cross the Cepheid Instability Strip for the highest magnitudes (i.e. I-mag~17) where Cepheids are observed; Mass-Luminosity relations (ML) obtained from evolutionary tracks disagree with Mass-Luminosity relations derived from observations. We find that the above failures concern models built with standard input physics as well as with non-standard ones. The present work suggests that towards highest magnitudes, Cepheids stars undergo a selection effect caused by evolution: only the most metal poor stars cross the Instability Strip during the ``blue loop'' phase and are therefore the only ones which can be observed at low luminosity. This solution enables us to reproduce the shape of the lower part of the Instability Strip and improves the agreement between observed and theoretical ML-relations. Some issues are discussed, among them Beat Cepheids results argue strongly in favor of our hypothesis.Comment: 13 pages, 8 figure

    Theoretical models for classical Cepheids. VIII. Effects of helium and heavy elements abundance on the Cepheid distance scale

    Full text link
    Previous nonlinear fundamental pulsation models for classical Cepheids with metal content Z <= 0.02 are implemented with new computations at super-solar metallicity (Z=0.03, 0.04) and selected choices of the helium-to-metal enrichment ratio DeltaY/Delta Z. On this basis, we show that the location into the HR diagram of the Cepheid instability strip is dependent on both metal and helium abundance, moving towards higher effective temperatures with decreasing the metal content (at fixed Y) or with increasing the helium content (at fixed Z). The contributions of helium and metals to the predicted Period-Luminosity and Period-Luminosity-Color relations are discussed, as well as the implications on the Cepheid distance scale. Based on these new results, we finally show that the empirical metallicity correction suggested by Cepheid observations in two fields of the galaxy M101 may be accounted for, provided that the adopted helium-to-metal enrichment ratio is reasonably high (Delta Y/Delta Z ~ 3.5).Comment: 23 pages, including 6 postscript figures, accepted for publication on Ap
    corecore