1,144 research outputs found

    Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers

    Get PDF
    Oligomers of [E,E] BChl CF (8, 12-diethyl bacteriochlorophyll c esterified with farnesol (F)) and [Pr,E] BChl CF (analogously, M methyl, Pr propyl) in hexane and aqueous detergent or lipid micelles were studied by means of steady-state absorption, time-resolved fluorescence, and electron spin resonance spectroscopy. The maximum absorption wavelength, excited-state dynamics, and electron spin resonance (EPR) linewidths are similar to those of native and reconstituted chlorosomes of Chlorobium tepidum. The maximum absorption wavelength of oligomers of [E,E] BChl CF was consistently blue-shifted as compared to that of [Pr,E] BChl CF oligomers, which is ascribed to the formation of smaller oligomers with [E,E] BChl CF than [Pr,E] BChl CF. Time-resolved fluorescence measurements show an excited-state lifetime of 10 ps or less in nonreduced samples of native and reconstituted chlorosomes of Chlorobium tepidum. Under reduced conditions the excited-state lifetime increased to tens of picoseconds, and energy transfer to BChl a or long-wavelength absorbing BChl c was observed. Oligomers of [E,E] BChl CF and [Pr,E] BChl CF in aqueous detergent or lipid micelles show a similar short excited-state lifetime under nonreduced conditions and an increase up to several tens of picoseconds upon reduction. These results indicate rapid quenching of excitation energy in nonreduced samples of chlorosomes and aqueous BChl c oligomers. EPR spectroscopy shows that traces of oxidized BChl c radicals are present in nonreduced and absent in reduced samples of chlorosomes and BChl c oligomers. This suggests that the observed short excited-state lifetimes in nonreduced samples of chlorosomes and BChl c oligomers may be ascribed to excited-state quenching by BChl c radicals. The narrow EPR linewidth suggests that the BChl c are arranged in clusters of 16 and 6 molecules in chlorosomes of Chlorobium tepidum and Chloroflexus aurantiacus, respectively

    Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds

    Full text link
    As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take planetary atmospheric compositions simulated by Segura, et al. (2003, 2005) for Earth-like planets around observed F2V and K2V stars, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. We calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the NIR, in bands at 0.93-1.1 microns, 1.1-1.4 microns, 1.5-1.8 microns, and 1.8-2.5 microns. In addition, we calculate wavelength restrictions for underwater organisms and depths of water at which they would be protected from UV flares in the early life of M stars. We estimate the potential productivity for both surface and underwater photosynthesis, for both oxygenic and anoxygenic photosynthesis, and for hypothetical photosynthesis in which longer wavelength, multi-photosystem series are used.Comment: 59 pages, 4 figures, 4 tables, forthcoming in Astrobiology ~March 200

    Spectral signatures of photosynthesis I: Review of Earth organisms

    Full text link
    Why do plants reflect in the green and have a 'red edge' in the red, and should extrasolar photosynthesis be the same? We provide: 1) a brief review of how photosynthesis works; 2) an overview of the diversity of photosynthetic organisms, their light harvesting systems, and environmental ranges; 3) a synthesis of photosynthetic surface spectral signatures; 4) evolutionary rationales for photosynthetic surface reflectance spectra with regard to utilization of photon energy and the planetary light environment. Given the surface incident photon flux density spectrum and resonance transfer in light harvesting, we propose some rules with regard to where photosynthetic pigments will peak in absorbance: a) the wavelength of peak incident photon flux; b) the longest available wavelength for core antenna or reaction center pigments; and c) the shortest wavelengths within an atmospheric window for accessory pigments. That plants absorb less green light may not be an inefficient legacy of evolutionary history, but may actually satisfy the above criteria.Comment: 69 pages, 7 figures, forthcoming in Astrobiology March 200

    Comparative susceptibility of \u3ci\u3eOstrinia furnacalis, Ostrinia nubilalis,\u3c/i\u3e and \u3ci\u3eDiatraea saccharalis\u3c/i\u3e (Lepidoptera: Crambidae) to \u3ci\u3eBacillus thuringiensis\u3c/i\u3e Cry1 toxins

    Get PDF
    Transgenic corn hybrids that express toxins from Bacillus thuringiensis (Bt) are highly effective against the European corn borer, Ostrinia nubilalis (HĂŒbner), and the closely related Asian corn borer, Ostrinia furnacalis (GuenĂ©e). Since the registration of Bt corn hybrids in the U.S. in 1996, there has been a great deal of information generated on O. nubilalis. However, relatively little information exists for O. furnacalis. To help determine whether the information generated for O. nubilalis can be leveraged for decisions regarding the use of transgenic Bt corn against O. furnacalis, experiments were designed to determine whether the pattern of sensitivity to various Bt Cry1 toxins is similar between the two species. Test insects included laboratory-reared O. furnacalis originating from Malaysia, a Bt-susceptible laboratory colony of O. nubilalis maintained at the University of Nebraska-Lincoln (UNL) and an out-group consisting of the sugarcane borer, Diatraea saccharalis (F.), from Louisiana which represents a different genus from the same family. O. furnacalis and O. nubilalis exhibited a similar pattern of susceptibility to all the Cry1 toxins and were highly susceptible to the range of Bt toxins tested including Cry1Aa, Cry1Ab, Cry1Ac and Cry1F. Both of the Ostrinia species were more tolerant to Cry1Ba compared with D. saccharalis, although sensitivity of O. furnacalis was intermediate and did not differ significantly from that of O. nubilalis and D. saccharalis. D. saccharalis was also susceptible to the range of toxins tested but unlike the two Ostrinia species, was more tolerant to Cry1F and more susceptible to Cry1Ba. These results indicate that both of the Ostrinia corn borer species are similar in sensitivity to the Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1F toxins, thus suggesting shared toxin receptors and mechanisms of toxicity for the two species

    Non-equilibrium relaxation of hot states in organic semiconductors: Impact of mode-selective excitation on charge transfer.

    Get PDF
    The theoretical study of open quantum systems strongly coupled to a vibrational environment remains computationally challenging due to the strongly non-Markovian characteristics of the dynamics. We study this problem in the case of a molecular dimer of the organic semiconductor tetracene, the exciton states of which are strongly coupled to a few hundreds of molecular vibrations. To do so, we employ a previously developed tensor network approach, based on the formalism of matrix product states. By analyzing the entanglement structure of the system wavefunction, we can expand it in a tree tensor network state, which allows us to perform a fully quantum mechanical time evolution of the exciton-vibrational system, including the effect of 156 molecular vibrations. We simulate the dynamics of hot states, i.e., states resulting from excess energy photoexcitation, by constructing various initial bath states, and show that the exciton system indeed has a memory of those initial configurations. In particular, the specific pathway of vibrational relaxation is shown to strongly affect the quantum coherence between exciton states in time scales relevant for the ultrafast dynamics of application-relevant processes such as charge transfer. The preferential excitation of low-frequency modes leads to a limited number of relaxation pathways, thus "protecting" quantum coherence and leading to a significant increase in the charge transfer yield in the dimer structure.A.M.A. acknowledges the support of the Engineering and Physical Sciences Research Council (EPSRC) for funding under Grant No. EP/L015552/1

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models
    • 

    corecore