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Redox Effects on the Excited-State Lifetime in Chlorosomes and
Bacteriochlorophyll ¢ Oligomers
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ABSTRACT Oligomers of [E,E] BChl ¢ (8,12-diethyl bacteriochlorophyll ¢ esterified with farnesol (F)) and {Pr,E] BChl c¢
(analogously, M methyl, Pr propyl) in hexane and aqueous detergent or lipid micelles were studied by means of steady-state
absorption, time-resolved fluorescence, and electron spin resonance spectroscopy. The maximum absorption wavelength,
excited-state dynamics, and electron spin resonance (EPR) linewidths are similar to those of native and reconstituted
chlorosomes of Chlorobium tepidum. The maximum absorption wavelength of oligomers of [E,E] BChl ¢ was consistently
blue-shifted as compared to that of [Pr,E] BChi ¢ oligomers, which is ascribed to the formation of smaller oligomers with [E,E]
BChl c¢ than [Pr, E] BChi c.. Time-resolved fluorescence measurements show an excited-state lifetime of 10 ps or less in
nonreduced samples of native and reconstituted chlorosomes of Chlorobium tepidum. Under reduced conditions the
excited-state lifetime increased to tens of picoseconds, and energy transfer to BChl a or long-wavelength absorbing BChl ¢
was observed. Oligomers of [E,E] BChl ¢ and [Pr,E] BChl ¢ in aqueous detergent or lipid micelles show a similar short
excited-state lifetime under nonreduced conditions and an increase up to several tens of picoseconds upon reduction. These
results indicate rapid quenching of excitation energy in nonreduced samples of chiorosomes and aqueous BChl ¢ oligomers.
EPR spectroscopy shows that traces of oxidized BChl ¢ radicals are present in nonreduced and absent in reduced samples
of chlorosomes and BChl ¢ oligomers. This suggests that the observed short excited-state lifetimes in nonreduced samples
of chlorosomes and BChl ¢ oligomers may be ascribed to excited-state quenching by BChl ¢ radicals. The narrow EPR
linewidth suggests that the BChi c are arranged in clusters of 16 and 6 molecules in chiorosomes of Chlorobium tepidum and

Chloroflexus aurantiacus, respectively.

INTRODUCTION

The majority of light-harvesting pigments in green photo-
synthetic bacteria are located in chlorosomes, which are
large membrane-attached ellipsoid bodies with an average
size of 100 nm X 30 nm X 10 nm (Olson, 1980; Amesz,
1991; Blankenship et al., 1995). Besides several types of
carotenoids and small amounts of BChl a, these chloro-
somes contain BChl ¢, d, or e, depending on the specific
species (Amesz, 1991; Blankenship et al., 1995). Each
chlorosome contains approximately 10,000 BChl ¢, d, or e,
surrounded by a lipid monolayer (Olson, 1980). The pig-
ment-protein ratio in chlorosomes is nearly two- to threefold
higher than in light-harvesting antenna of other photosyn-
thetic species (Schmidt, 1980; Amesz, 1991; Blankenship et
al., 1995), suggesting that pigment-pigment interactions
may prevail above pigment-protein interactions. Further-
more, the Qy absorption maximum of BChl ¢, d, or ¢ in vivo
is shifted to longer wavelengths as compared to that in polar
organic solvents, indicating that pigment-pigment excitonic
interactions play a major role in these light-harvesting sys-
tems (Scherz et al., 1991; Katz et al., 1991). However, the
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role of protein in chlorosomes is still a subject of debate
(Holzwarth et al., 1992; Niedermeier et al., 1992).

The molecular structures of BChl ¢, d, and e are partic-
ularly well suited to pigment-pigment aggregation. It was
first shown by Bystrova et al. (1979) that BChl ¢ spontane-
ously associates in oligomers absorbing at 750 nm in non-
polar solvents. This result was later confirmed by many
other groups (Smith et al., 1983; Olson and Cox, 1991;
Olson and Pedersen, 1990; Brune et al., 1987). The involve-
ment of the central Mg atom in the self-assembly of 740 nm
absorbing oligomers was shown by the lack of such self-
assembly of Mg-free BPheo ¢ (Bystrova et al., 1979; Smith
et al., 1983). Self-assembly was also absent when pyro-
chlorophyll @, which lacks the C3? hydroxyl group of BChl
¢, was used, indicating that the C3? hydroxyl group is
involved in self-oligomerization of BChl ¢ as well (Brune et
al., 1988). Several infrared and resonance Raman tech-
niques showed that the C13' keto group is strongly bound in
the BChl ¢ oligomers (Bystrova et al., 1979; Lutz and van
Brakel, 1988). These vibrational spectroscopic techniques
also showed that the central Mg atom is likely 5-coordinated
(Bystrova et al., 1979; Brune et al., 1988; Hildebrandt et al.,
1991, 1994). Additional evidence for BChl ¢ oligomers in
chlorosomes has recently been provided by '>*C NMR stud-
ies on chlorosomes of Chlorobium tepidum and BChl ¢
aggregates (Nozawa et al., 1994; Balaban et al., 1995).

Early work on long-wavelength-absorbing oligomers of
BChl ¢, d, or e used only highly nonpolar solvents (Smith et
al., 1983; Bystrova et al., 1979; Olson and Pedersen, 1990;
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Brune et al., 1987). Recently it was found that dispersion in
water of a pigment-lipid extract from chlorosomes resulted
in similar long-wavelength-absorbing oligomers, with an
absorption spectrum strongly resembling that of isolated
chlorosomes (Hirota et al., 1992; Miller et al., 1993). It was
suggested that the lipids create a hydrophobic environment
in which BChls accumulate and self-assemble into long-
wavelength-absorbing oligomers. Recently, similar long-
wavelength-absorbing oligomers were prepared with differ-
ent types of purified BChl ¢ in the presence of the major
natural abundant lipid in chlorosomes, monogalactosyl di-
glyceride (MGDG) (Uchara et al., 1994). These types of
aqueous oligomers create the possibility of studying BChl
oligomers in a more natural environment.

Many studies have been performed on the molecular
interactions in BChl ¢ oligomers, but not much is known
about their actual excited-state dynamics. This is especially
interesting because of the major light-harvesting function of
BChls in chlorosomes, which is absorption of light and
transfer of the excitation energy to the BChl a baseplate
(Olson, 1980; Amesz, 1991; Blankenship et al., 1995).
Time-resolved fluorescence measurements on oligomers in
hexane showed a decrease in the excited-state lifetime by at
least a factor of 100 as compared to that of the monomer
(Brune et al., 1987). Similar studies on different dimers and
oligomers in CCl, hexane mixtures showed lifetimes of
1030 ps for large oligomers and hundreds of picoseconds
for dimers and trimers (Causgrove et al., 1990, 1993).

It has been shown that the excited-state lifetime of BChl
¢ in chlorosomes of anoxygenic green sulfur bacteria in-
creases at low redox potential (van Dorssen et al., 1986;
Wang et al., 1990; Blankenship et al., 1993). A potential
explanation the prevention of photochemistry in the reaction
center, which, under oxidized conditions, may already be
oxidized and can therefore be damaged by an excess of
excitation energy (Blankenship et al., 1993, 1995). It is not
yet clear what the mediator of this redox-regulated quench-
ing effect might be.

In this paper we report the steady-state spectra of oli-
gomers of [E,E] BChl cg (8,12-diethyl bacteriochlorophyll ¢
esterified with farnesol (F)) and [Pr,E] BChl ¢ (analogous-
ly, M methyl, Pr propyl; see Smith, 1994) in hexane and
detergent/lipid micelles. The largest red shift upon oli-
gomerization is observed in hexane, the smallest one in
detergent micelles. Oligomers of [E,E] BChl ¢ show con-
sistently less red shift of their absorption maximum than
those of [Pr,E] BChl ¢g. The excited-state dynamics in these
oligomers were studied by means of time-resolved fluores-
cence as a function of the redox potential, and the fluores-
cence lifetimes will be compared to those observed in native
and reconstituted chlorosomes of Chlorobium tepidum. The
fluorescence lifetimes in aqueous oligomers were strongly
redox sensitive, comparable to the redox-controlled life-
times observed in native chlorosomes. Electron spin reso-
nance (EPR) spectroscopy shows that the redox-controlled
excited-state dynamics can be well explained by the pres-
ence of BChl c radicals. The EPR linewidth is related to the
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number of molecules involved in oligomerization and shows
that the differences in absorption maxima can be explained
by the tendency to form smaller or larger oligomers.

MATERIALS AND METHODS

Cb. tepidum cells were grown phototrophically in a 90 liter container, using
the medium described by Wahlund et al. (1991). After precipitation of the
cells by the addition of 1 liter of saturated alum (KAI(SO,),'H,0), the cells
were harvested by centrifugation. Chlorosomes of Cb. tepidum and Chlo-
roflexus aurantiacus were isolated according to the method described by
Gerola and Olson (1986) and stored at —20°C until further use.

Pigment extraction

Pigments were extracted by sonication of whole cells in excess of metha-
nol. Cell fragments were pelleted by centrifugation at 26,000 X g for 20
min. The supernatant, containing BChl ¢, BChl a, carotenoids, and pre-
sumably polar lipids, was dried under vacuum on a rotary evaporator. The
dried film was dissolved in hexane, and BChl c aggregates were pelleted by
centrifugation at 30,000 X g for 20 min. The supernatant, which contained
mainly carotenoids, was discarded, and the pellet was dissolved in a
minimal volume of methanol. Pigments were purified on reversed-phase
high-performance liquid chromatography, as described by Cheng et al.
(1993). An eluent mixture of methanol and water (96:4, v/v), a flow rate of
10 ml/min, and approximately 2000 psi gave a satisfactory separation of
pigments. The chromatogram was in agreement with that published by
Nozawa et al. (1991), who identified the two major pigment fractions as
[E,E] BChl ¢ and [Pr,E] BChl c¢i. These two fractions were collected,
dried under vacuum on a rotary evaporator, and stored under nitrogen at
—20°C. If necessary, rechromatography was performed for additional
purification.

Lipid extraction

Lipids were isolated by extraction of pigments and polar lipids from
chlorosomes in an excess of methanol. The extract was centrifuged for 10
min at 3000 X g, resulting in a white pellet and green supernatant. The
pellet, containing protein and nonpolar lipids, was dissolved in chioroform
and centrifuged for 10 min at 12,000 X g. The supernatant, containing
nonpolar lipids, was dried under vacuum and stored at —20°C. Thin-layer
chromatography (TLC) showed no presence of MGDG lipids, but only one
other type, probably a mixture of phospholipids (Schmidt, 1980), was
present.

Oligomer preparation

Oligomers of [E,E] BChl ¢ and [Pr,E] BChl ¢ in hexane were prepared
according to the method described by Brune et al. (1987). Protein-free
reconstituted chlorosomes of Cb. tepidum were obtained according to the
method described by Hirota et al. (1992). A pigment-lipid mixture of
chlorosomes of Cb. tepidum was extracted in chloroform and dried under
vacuum. The dried extract was redissolved in a small volume of methanol,
and aliquots (less than 1% v/v) were injected into a vigorously stirred 10
mM potassium phosphate buffer (pH 7.4). In most cases, the initial ab-
sorption maximum was at 720 nm. Additional sonication for 10-20 min in
a bath sonicator resulted in reproduction of the 740-nm absorption, as was
reported previously for extracts of Chlorobium limicola (Hirota et al.,
1992). Oligomers of [E,E] BChl cF and [Pr,E] BChl ¢ in detergent
micelles were prepared by dispersion of aliquots of purified pigments in
methanol (less than 1% v/v) into a 0.15 mM B-N-dodecylmaltoside, 10 mM
potassium phosphate buffer (pH 7.4) and 20 min of sonication in a bath
sonicator. Oligomers in MGDG lipid were prepared according to the
method described by Uehara et al. (1994); concentrated purified [E,E]
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BChl cg or [Pr,E] BChl ¢ in methanol were mixed with MGDG in
methanol, before injection into a vigorously stirred 10 mM potassium
phosphate buffer. The total methanol concentration was kept at less than
1% (viv).

Time-resolved fluorescence

Picosecond time-resolved fluorescence experiments were performed by
means of single-photon counting with a synchronously pumped dye laser
operating at 7.6 MHz, as described in detail by Causgrove et al. (1990).
Samples were contained in a stationary cuvette with an optical path length
of 1.5 mm, and the optical density was typically 0.5/cm or less. The
excitation beam was focused into the cuvette by a 1-m focal length lens,
and fluorescence was collected in 90° configuration. The excitation wave-
length was at 590 nm. The instrumental time response function was about
50 ps at FWHM. Data were analyzed by means of global analysis, and the
accuracy of the fit was determined by the x* value.

EPR spectroscopy

EPR spectra were measured on a Bruker 300 E spectrometer at 125 K using
a standard liquid nitrogen cryostat. Microwave power of 2.0 mW and 100
kHz modulation amplitude of either 0.9 or 1.9 Gauss were used, as
indicated in the text. Each spectrum is an average of 32 scans.

Redox control

Samples referred to as “neutral” contained no added redox mediators. The
average measured redox potential of these samples was 200 = 50 meV,
depending on the amount of oxygen present. Oxidized aqueous samples
were prepared by the addition of 20 mM potassium ferricyanide
(K;Fe(CN),), resulting in a typical redox potential of 600 = 50 meV.
Aqueous samples were reduced by the addition of 10-30 mM sodium
dithionite (Na,S,0,) to a typical redox potential of —400 = 50 mV.

RESULTS
Steady-state absorption spectra

Steady-state absorption spectra of chlorosomes of Cb. tepi-
dum (solid line) and its pigment-lipid reconstitute (dotted
line) are shown in Fig. 1 A. The final Q, absorption of the
reconstituted chlorosomes of Cb. tepidum tends to be
shifted 10 nm to the blue, as compared to that of the original
chlorosomes, as was also observed by Hirota et al. (1992)
for chlorosomes of C. Limicola. The resemblance of the
absorption spectrum of chlorosomes and its protein-free
reconstitute is striking. Besides the blue-shifted Q, maxi-
mum in reconstituted chlorosomes, the BChl a absorption
appears to be broadened as compared to that in original
chlorosomes, indicating disruption of the BChl a baseplate
structure.

Fig. 1 B shows the absorption spectrum of [E,E] BChl cg
and [Pr,E] BChl ¢ in an aqueous solution of MGDG lipids.
The absorption maximum of [E,E] BChl cg is at 729 nm,
and that of [Pr,E] BChl ¢ is at 740 nm. Both absorption
maxima are in good agreement with previous data (Uehara
et al., 1994). When the MGDG lipid and [E,E] BChl cg or
[Pr,E] BChl ¢ were dissolved in dichloromethane instead
of methanol, oligomers were still formed, but the inhomo-
geneous linewidth of the spectra was nearly two times
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larger. Because BChl ¢ is probably dimeric in dichlorometh-
ane (Olson and Pedersen, 1990), this indicates that the final
absorption spectra depend on the type of building block the
oligomerization starts with.

MGDG is the major lipid in chlorosomes of green sulfur
bacteria. To determine whether this lipid is unique in the
formation of the oligomers we isolated nonpolar lipids from
chlorosomes. Thin-layer chromatography showed that these
lipids were not MGDG lipids, but probably a mixture of
phospholipids. The spectra of [E,E] BChl ¢ and [Pr,E]
BChl cg, mixed with this lipid mixture in methanol and
subsequently dispersed in water, are shown in Fig. 1 C.
Oligomers were formed with absorption maxima at 722 nm
for [E,E] BChl ¢ and 746 nm for {Pr,E] BChl ¢g. This
suggests that any amphiphilic molecule in aqueous solution
that creates a hydrophobic environment for BChl ¢ will
stimulate the formation of oligomers. Oligomers of [E,E]
BChl cg and [Pr,E] BChi ¢ in micelles of dodecylmaltoside
are shown in Fig. 1 D. The absorption maxima are at 726
nm and 738 nm, respectively. Oligomers in detergent mi-
celles have also been observed while using dodecyl sulfate
as detergent (Niedermeier et al., 1992).

The absorption spectra of [E,E] BChl cg (dotted line) and
[Pr,E] BChl cg (solid line) in the apolar organic solvent
hexane are shown in Fig. 1 E. The Q, absorption of [E,E]
BChl c¢g and [Pr,E] BChl ¢ are 741 and 752 nm, respec-
tively. The spectra show a shoulder on the blue side of the
Q, absorption band. This can be ascribed to small amounts
of dimers or tetramers, which are present because of the
addition of dichloromethane (Olson and Cox, 1991). Di-
chloromethane (3—-5%) was added to prevent precipitation
of the oligomers as reported by Brune et al. (1987).

Time-resolved fluorescence

The time-resolved decay-associated fluorescence spectra of
chlorosomes, reconstituted chlorosomes, and aqueous BChl
¢ oligomers were studied in the absence (‘‘neutral” condi-
tion) or presence (reduced condition) of sodium dithionite.
Fig. 2 A shows the excited-state lifetimes of chlorosomes of
Cb. tepidum. In the absence of dithionite (Fig. 2 A, upper
panel), we observed a major decay component of 9 ps and
a minor one of 45 ps. None of these components showed a
rise at 800 nm, indicating the absence of significant energy
transfer from the bulk BChls ¢ to the baseplate BChl a.
Upon the addition of dithionite (Fig. 2 A, lower panel), the
major fluorescence decay component increased to about 40
ps and showed a rise component around 800 nm, indicating
that under reduced conditions excitation energy is trans-
ferred from BChl ¢ to the BChl a baseplate with an overall
time constant of about 40 ps. An additional main decay
component of 540 ps is clearly red shifted compared to the
40-ps component. The apparent dual maxima in fluores-
cence at 790 and 810 nm suggest that this decay component
may be ascribed to decay of excitation energy equilibrated
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FIGURE 1 (A) Steady-state absorption spectra of native (

spectra of purified [Pr,E] BChl ¢ (

between long-wavelength-absorbing BChl ¢ and BChl a
baseplate. The existence of such a long-wavelength-absorb-
ing BChl ¢ species in chlorosomes has also been suggested
by other studies (Savikhin et al., 1994, 1995b; Mimuro et
al., 1994; van Noort et al., 1994). Other longer-lived decay
components with a maximum at 750 nm and 810 nm were
ascribed to slow relaxation of BChl ¢ and a, respectively.
The increase in fluorescence lifetime upon the addition of
dithionite is in good agreement with steady-state fluores-
cence measurements (van Dorssen et al., 1986; Wang et al.,
1990), in which 800-nm fluorescence is only observed at
low redox potential. The fluorescence lifetimes in the pres-
ence and absence of dithionite in chlorosomes of Cb. tepi-
dum are in good agreement with those observed by Caus-
grove et al. (1992) in chlorosomes of the related species Cb.
limicola. The fluorescence excited-state dynamics of recon-
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) and reconstituted protein free chlorosomes (— ——) of Cb. tepidum. Steady-state absorption
) and [E,E] BChl ¢¢ (- — ) in (B) MGDG (C) nonpolar lipid extract of chlorosomes (D) dodecylmaltoside, and (E)
hexane. The spectra were normalized to 1.0 in the @, absorption maximum.

stituted chlorosomes are shown in Fig. 2 B. In the absence
of dithionite (Fig. 2 B, upper panel) we observed a major
decay component of 4 ps and a minor one of 45 ps, indi-
cating that excitation energy in these reconstituted chloro-
somes is highly quenched. Although the 4-ps component is
at or beyond the time resolution of our apparatus, this short
excitation lifetime is comparable to that of native chloro-
somes under oxidized conditions. A similarity in excited-
state dynamics of BChl ¢ in native and reconstituted chlo-
rosomes has also been reported by Savikhin et al. (1995a).
Upon the addition of dithionite (Fig. 2 B, lower panel), the
fluorescence lifetime of BChl ¢ increased to about 22 ps and
showed a rise at 800 nm, indicative of excitation energy
transfer from BChl ¢ to a longer-wavelength-absorbing spe-
cies. Either longer-wavelength-absorbing BChl ¢ oligomers
or BChl a may act as acceptors of excitation energy. Similar
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FIGURE 2 Decay-associated fluorescence decay spectra of (A) native chlorosomes (B) reconstituted chlorosomes (C) [E,E] BChl ¢ in MGDG, and (D)
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energy transfer processes have been suggested by Miller et
al. (1993) in reconstituted chlorosomes of Cf. aurantiacus.

Uehara et al. (1994) showed that long-wavelength-ab-
sorbing oligomers of BChl ¢ can be prepared in the presence
of MGDG. Although the structure of this lipid oligomer is
not known, these preparations might reflect the in vivo
structure of oligomers better than the oligomers in organic
solvents. The decay-associated fluorescence spectra of
(E.E] BChl ¢ and [Pr,E] BChl ¢g in MGDG are shown in
Fig. 2, C and D, respectively. In the absence of dithionite we
observed a major decay component of about 10 ps for
oligomers of [E,E] BChl ¢ (Fig. 2 C, upper panel) and
[Pr,E] BChl ¢ (Fig. 2 D, upper panel), indicating rapid
quenching of excitation energy within these oligomers, sim-
ilar to that observed in native and reconstituted chloro-
somes. Upon the addition of dithionite the lifetimes of [E,E]
BChl ¢ and [Pr,E] BChl ¢ MGDG oligomers increased
significantly. In the case of [E,E] BChl ¢z MGDG oli-
gomers, the main fluorescence lifetime component in-
creased from about 10 to 50 ps upon the addition of dithio-
nite. The addition of dithionite to MGDG oligomers of
[Pr,E] BChl cg resulted in multiexponential relaxation ki-
netics. A rise component of about 10 ps with a maximum at
760 nm, a multiexponential decay with a major component
of 90 ps showing a maximum at 760 nm, and a minor
redshifted decay component of 140 ps with a maximum at
770 nm were observed. The accuracy of the 10-ps rise time
is uncertain and depends on the selected time window for
global analysis. However, a rise component was definitely
needed to obtain a satisfactory fit of the data. The fluores-
cence decay at 670 nm showed a major decay component of
13 ps, suggesting that the observed rise in MGDG oligomers
of [Pr,E] BChl cf arises from energy transfer from a 670-
nm-absorbing species to the main [Pr,E] BChl ¢z MGDG
oligomers. The absence of such a rise in [Pr,E] BChl cp
MGDG oligomers without dithionite can be explained by
rapid quenching of excitation energy, preventing visualiza-
tion of an apparent rise component. The multiexponential
fluorescence decay from 740 to 790 nm indicates strong
inhomogeneity in the MGDG [Pr,E] BChl ¢ oligomers,
which can mainly be ascribed to two types of [Pr,E] BChl cg
oligomers, fluorescent at 760 and 770 nm. The increase in
fluorescence lifetime in MGDG oligomers of (E,E] BChl cg
and [Pr,E] BChl ¢ upon the addition of dithionite are in
good agreement with a two- to fivefold increase in the
steady-state fluorescence (data not shown).

The redox effect on the excited-state lifetimes in BChl ¢
oligomers is comparable to that observed in isolated chlo-
rosomes, but cannot be explained by chlorosome-bound
redox mediators. Traces of impurities during the isolation
and purification of BChl ¢ may account for the additional
quenching of excitation energy in BChl ¢ oligomers. We
compared the increase in steady-state fluorescence of oli-
gomers composed of freshly prepared BChl ¢ with those of
BChl ¢ that had been stored. HPLC analysis showed that
purified BChl ¢ degrades during storage at —20°C into
several degradation compounds. However, we observed no
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significant difference in the effect of dithionite on the
steady-state fluorescence of oligomers composed of fresh or
degraded BChl c, suggesting that the fluorescence quench-
ing under oxidized conditions is not caused by the presence
of trace impurities due to a small amount of degradation
during isolation. Furthermore, neither the steady-state ab-
sorption nor the FT-Raman spectra of isolated chlorosomes
(G. S. Jas, personal communication) show any significant
differences upon the addition of dithionite, suggesting the
absence of major structural differences upon the addition of
dithionite.

Electron spin resonance

To study the potential formation of radicals, which may act
to quench excitation energy in pigment oligomers (de Boer
et al., 1987), we performed EPR experiments. EPR spectra
of isolated chlorosomes of Cf. aurantiacus and Cb. tepidum
under neutral, oxidized, and reduced conditions are shown
in Fig. 3. Oxidized chlorosomes of Cb. tepidum (Fig. 3 A)
show a clear EPR signal at a g value of 2.0025 and a
linewidth of 5 Gauss. The g value at 2.0025 is characteristic
for a free radical and is ascribed to oxidized BChl c. A

dy"/dH

dy*/dH
o

-1 10° [

-2 10°

3390 3400 3410 3420

FIGURE 3 EPR spectra of chlorosomes of Cb. tepidum (A) and Cf.
aurantiacus (B) in neutral, reduced, and oxidized conditions. The neutral
and reduced spectra were enlarged for better comparison. The microwave
power and modulation frequency were at 2.0 mW and 0.9 G, respectively.
The temperature was 125 K.
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similar small EPR signal is observed in neutral chlorosomes
of Cb. tepidum, suggesting that a small fraction of BChls ¢
is oxidized in this “neutral” state. When chlorosomes of Cb.
tepidum were reduced by sodium dithionite, no significant
EPR signal was observed, indicating that the traces of
oxidized BChl ¢ have been reduced by dithionite.

Oxidized chlorosomes of Cf. aurantiacus (Fig. 3 B) show
a large EPR signal at the same g value as that observed for
oxidized chlorosomes of Cb. tepidum. However, the line-
width of the EPR signal in chlorosomes of Cf. aurantiacus
is about 3 Gauss. This linewidth is in good agreement with
that observed by Betti et al. (1982) and somewhat smaller
than that of chlorosomes of Cb. tepidum. Neutral chloro-
somes of Cf. aurantiacus show a faint EPR signal. This
indicates that neutral chlorosomes of Cf. aurantiacus con-
tain minor traces of oxidized BChl ¢, as was also observed
for neutral chlorosomes of Cb. tepidum. Reduced chloro-
somes of Cf. aurantiacus show no trace of any EPR signal,
indicating the complete absence of oxidized BChl c. After
correction for differences in optical density, the EPR signal
in neutral chlorosomes of Cf. aurantiacus is about 10 times
larger than that in chlorosomes of Cb. tepidum, suggesting
that radical formation may be more efficient in chlorosomes
of Cf. aurantiacus.

Fig. 4 shows the results of EPR spectroscopy on oxidized
[E.E] BChl ¢z monomer and oxidized MGDG oligomers of
{E,E] BChl ¢ and [Pr,E] BChl ¢ Oxidized BChl ¢ mono-
mer (upper signal) shows an EPR signal at 2.0025 g with a
linewidth of about 12 Gauss. Similar signals have been
observed for radicals of monomeric BChl @ and Chl a
(Norris et al., 1971). Oxidized MGDG oligomers of (E,E]
BChl ¢ and [Pr,E] BChl ¢ show EPR signals at the same
g value, but with a linewidth of 8 Gauss and 5 Gauss,
respectively. Because the optical densities of monomer and
MGDG oligomers were equal in this experiment, the am-
plitudes of the EPR signals can be compared directly. This
comparison suggests that radical formation by oxidation
with K;Fe(CN)4 is least efficient in oligomers of [Pr.E]
BChl ¢ and somewhat more efficient in oligomers of [E,E]

————T
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FIGURE 4 EPR spectra of [E,E] BChl ¢z monomer in methanol/water
(3:1 v/v), [E,E] BChl cg, and [Pr,E] BChl ¢ in MGDG. All samples were
oxidized. The microwave power and modulation frequency were at 2.0
mW and 0.9 G, respectively. The temperature was 125 K.
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BChl cg. In neutral oligomers of [E,E] BChl ¢g and [Pr,E]
BChl ¢ we observed a similar EPR signal, indicating that
traces of oxidized BChl ¢ are present in these oligomers
under so-called neutral conditions. The amplitude of the
EPR signals in neutral oligomers was nearly 10 times
smaller than those in oxidized conditions.

DISCUSSION

The steady-state absorption maxima of [E,E] BChl ¢ and
[Pr,E] BChl cg in hexane and aqueous lipid or detergent
micelles are red shifted as compared to the 667 nm absorp-
tion of monomeric [E,E] BChl ¢ and [Pr,E] BChl ¢ in
methanol. This indicates that excitonic interactions between
molecules occur by the formation of oligomers. The final
red shift of the absorption maximum of the excitonically
coupled pigments depends on the intermolecular orienta-
tions and the size of the aggregate (Kasha, 1976; Alden et
al., 1992). The larger the number of molecules involved in
excitonic interaction, the larger the red shift of the final
maximum absorption wavelength. Infrared spectroscopic
studies on BChl ¢ oligomers in organic solvents as well as
in aqueous solution show similar vibrational bands, indicat-
ing analogous intermolecular interaction between molecules
in these oligomers. This suggests that the observed increase
in absorption maximum of [E,E] BChl ¢ and [Pr,E] BChl
cr in dodecylmaltoside, MGDG, phospholipid, and hexane
may be attributed to an increase in the size of the oligomers.
This is corroborated by the observed precipitation of oli-
gomers in hexane.

The steady-state absorption spectra (Fig. 1) also show
that the absorption maximum of [E,E] BChl cg oligomers is
blue shifted compared to that of [Pr,E] BChl ¢ in all
solvents studied. A similar trend has been observed by Bobe
et al. (1990) and may be ascribed to a slight variation in
molecular excitonic interaction and/or oligomer size. At
present there is no clear indication of variation in infrared
vibrational bands of [E,E] BChl ¢ and [Pr,E] BChl cg
oligomers (Uehara et al., 1994), suggesting that [E,E] BChl
¢ oligomers are smaller than [Pr,E] BChi ¢ oligomers. It is
possible that an increase in lipophilicity of the alkyl groups
at the 8 and 12 positions increases the hydrophobic inter-
action between porphyrin backbones, resulting in stronger
interaction and more stable oligomers.

The fluorescence lifetime in chlorosomes of green sulfur
bacteria strongly depends on the redox potential of the
environment (van Dorssen et al., 1986; Wang et al., 1990;
Blankenship et al., 1993). A similar redox effect is shown in
chlorosomes of Cb. tepidum (Fig. 2 A). In the absence of
sodium dithionite (so-called neutral condition), the major
decay component in chlorosomes of Cb. tepidum has a time
constant of 9 ps, and no energy transfer to BChl a can be
observed. Upon the addition of sodium dithionite (reduced
condition), the lifetime of the major decay component in-
creases by up to 40 ps and can be ascribed to energy transfer
to BChl a.
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It has been suggested that the redox-dependent excited-
state lifetime in chlorosomes is caused by redox-regulated
quenchers that control the flux of excitation energy into the
reaction center under oxidized or reduced conditions (Blan-
kenship et al., 1993). A similar control mechanism has been
observed in FMO proteins (Zhou et al., 1994), which has
also been suggested to be a potential redox-controlled
quencher of excitation energy. The excited-state dynamics
of reconstituted chlorosomes (Fig. 2 B) also show a decrease
in the excited-state lifetime, suggesting that a redox-con-
trolled quencher in chlorosomes is also incorporated during
the preparation procedure of reconstituted chlorosomes. Be-
cause these reconstituted chlorosomes are free of protein
(Miller et al., 1993), the redox-controlled quencher is not a
protein-bound species. This is corroborated by our observa-
tion that the excited-state lifetime of [E,E] BChl ¢ and
[Pr,E] BChl cg in MGDG (Fig. 2, C and D) and dodecyl-
maltoside (data not shown) micelles is also redox depen-
dent, indicating that the observed redox-dependent quench-
ing of excitation energy in isolated chlorosomes is
characteristic for BChl ¢ oligomers.

The redox-dependent excited-state lifetime of the BChl ¢
oligomers provides a different view of the mechanism of
excitation quenching in chlorosomes. The absence of pro-
tein- or lipid-bound quenchers in BChl ¢ oligomers suggests
that the quenching is inherent to aggregated BChl ¢ mole-
cules. Our EPR data on chlorosomes of Cb. tepidum and Cf.
aurantiacus show the presence of traces of free radicals
under so-called neutral conditions. The g value of 2.0025 is
very similar to that of oxidized BChl ¢, suggesting that some
oxidized BChl c¢ is indeed present. Under reduced condi-
tions these radicals are absent in chlorosomes as well as in
oligomers, indicating that the traces of oxidized BChl ¢ may
act as a potential quencher of excitation energy. Similarly, it
is known from several antenna reaction center complexes
that the oxidized primary donor, which is a BChl dimer, acts
as an efficient quencher of excitation energy from the antenna.

The presence of oxidized BChl ¢ radicals in chlorosomes
of the green filamentous species Cf. aurantiacus suggests
that the excited-state lifetime in these species may also be
redox sensitive. However, previous steady-state fluores-
cence spectra did not show this effect (Wang et al., 1990),
but more recent studies in isolated chlorosomes also show
an increase in excited-state lifetime in this species upon
reduction with sodium dithionite (Y. Zhu, personal commu-
nication). The cause of this difference in behavior between
cells and isolated chlorosomes is still unclear.

The oxidation of chlorosomes of Cb. tepidum and Cf.
aurantiacus results in an increase in the radical signal. The
linewidth of the radical signal is narrow compared to mo-
nomeric oxidized BChl ¢ (Fig. 4), indicating delocalization
of the free electron among different BChl ¢ molecules.
Norris et al. (1971) showed in aggregates of Chl a that the
linewidth of oxidized oligomers is proportional to the re-
ciprocal of the square root of the number of pigments
involved in delocalization of the free radical. Analogous to
this relation, the number of pigments involved in delocal-
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ization of the radical was calculated to be about 16 and 6 in
chlorosomes of Cf. aurantiacus and Cb. tepidum, respec-
tively. This may suggest that oligomers in chlorosomes of
the green filamentous species Cf aurantiacus are larger
than those in the green sulfur species Cb. tepidum. The EPR
linewidth in oxidized chlorosomes of Cf. aurantiacus is in
good agreement with previous studies of Betti et al. (1982).
A similar number of closely connected molecules was re-
ported by Smith et al. (1983) on oligomers of BChl ¢ in
hexane.

The EPR spectra of oxidized [E,E] BChl ¢ and [Pr,E]
BChl ¢ oligomers also provide a good indication of the
number of molecules involved in delocalization of the free
electron and are therefore one measure of the size of the
oligomers. The linewidths of 5 and 8 Gauss for oligomers of
(E,E] BChl cg and [Pr,E] BChl ¢ indicate that approxi-
mately six and two BChl ¢ molecules, respectively, are
involved in delocalization of the free radicals in these oli-
gomers. This number of closely connected molecules in
oligomers is smaller than those in isolated chlorosomes of
Cb. tepidum and Cf. aurantiacus and suggests that the blue
shift of the steady-state absorption maximum of oligomers
as compared to that of chlorosomes is an indication of a
smaller number of molecules involved in oligomerization.
Similarly, one may conclude that the consistently blue-
shifted absorption maximum of [E,E] BChl ¢ oligomers as
compared to [P,E] BChl cg oligomers is due to formation of
smaller molecular clusters.

CONCLUSIONS

Oligomers of different types of BChl ¢ spontaneously as-
semble in hydrophobic cavities created by amphiphilic mol-
ecules in aqueous solution. The red shift in absorption
maximum due to aggregation of molecules is larger for
[Pr,E] BChl ¢ oligomers than for [E,E] BChl ¢ oligomers,
which can be ascribed to the formation of larger oligomers
for [Pr,E] BChl c than for [E,E] BChl ¢, suggesting that
lipophilic interactions between the alkyl groups at the 8 and
12 positions play a considerable role in the stability of
oligomers. The time-resolved fluorescence study shows that
the fluorescence lifetimes in native and reconstituted chlo-
rosomes of Cb. tepidum and aqueous oligomers of [E,E]
BChl cg and [Pr,E] BChl ¢ are redox controlled. This can
be ascribed to the presence of BChl ¢ radicals, which may
act as a quencher for excitation energy and account for the
short excited-state lifetimes in these systems.
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