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The theoretical study of open quantum systems strongly coupled to a vibrational environment remains computationally
challenging, due to the strongly non-Markovian character of the dynamics. We study this problem in the case of a
molecular dimer of the organic semiconductor tetracene, the exciton states of which are strongly coupled to a few
hundreds of molecular vibrations. To do so, we employ a previously developed tensor network approach, based on
the formalism of matrix product states. By analysing the entanglement structure of the system wavefunction, we can
expand it in a tree tensor network state, which allows us to perform a fully quantum mechanical time evolution of
the exciton-vibrational system, including the effect of 156 molecular vibrations. We simulate the dynamics of hot
states, i.e. states resulting from excess energy photoexcitation, by constructing various initial bath states, and show
that the exciton system indeed has a memory of those initial configurations. In particular, the specific pathway of
vibrational relaxation is shown to strongly affect the quantum coherence between exciton states in timescales relevant
for the ultra-fast dynamics of application-relevant processes such as charge transfer. The preferential excitation of low-
frequency modes leads to a limited number of relaxation pathways, thus ‘protecting’ quantum coherence, and leading
to a significant increase of the charge transfer yield in the dimer structure.

I. INTRODUCTION

Light-harvesting in organic molecules is a fundamental pro-
cess which has attracted a lot of attention in recent years,
its applications ranging from photosynthetic systems1,2 to or-
ganic solar cells3. Following photoexcitation, ultra-fast (i.e.
femto- to picosecond timescale) non-equilibrium dynamics
drive the exciton energy transfer in these systems4, under-
lining the need to move away from the traditional thermo-
dynamic way of thinking, in order to better understand and
engineer such processes. In the past decade, the experimen-
tal study of organic semiconductors has provided a good un-
derstanding of ultra-fast processes, through the use of tech-
niques such as pump-push probe spectroscopy5–7 and tran-
sient absorption microscopy8,9. Several studies have empha-
sised the role of strong exciton-phonon coupling for driving
energy transfer in these systems10–13, indicating the relevance
of non-Markovian physics for such phenomena.

Following photoexcitation, one may think of the interac-
tion of an exciton system with the potentially large number of
molecular vibrations of organic structures as the interaction of
an open quantum system with its (vibrational) environment.
The various experimental setups outlined previously, allow
for preparing different initial quantum states, the time evo-
lution of which can be followed with great precision in the fs
timescale. Examples include ‘hot’ states, i.e. exciton states
with excess energy pumped into molecular vibrations14,15.
The insights generated from such works may be generalised to
a wide range of open quantum systems, which are relevant for
quantum technologies, biology and areas such as nanoscale
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quantum heat engines16–21. Furthermore, by formulating the
problem within the framework of open quantum system the-
ory, several techniques from these fields of study become
available in order to study the non-equilibrium dynamics from
a theoretical perspective. Such open quantum system treat-
ments of organic molecules have been used in the past22,23,
including techniques ranging from reduced density matrix
descriptions (master equations)24–26 to complete simulations
of system-bath wave functions with methods such as multi-
configurational time-dependent Hartree (MCDTH)27–29.

However, the theoretical and computational study of these
systems poses a significant challenge for several reasons.
Firstly, the large number of molecular vibrations often found
in organic molecules makes it necessary to account for com-
plicated many-body interactions. The strong exciton-phonon
coupling which was mentioned previously further complicates
things, as traditionally used perturbative approaches are not
necessarily applicable in this case13,30. For these reasons, we
adopt a tensor network formulation31 based on the formalism
of matrix product states32, which has previously been used
to study the ultra-fast dynamics of singlet exciton fission33

and exciton-polariton dynamics34,35. This so-called tree ten-
sor network state (TTNS) approach shows strong similarities
to the multilayer formulation of MCTDH36, and can capture
the full non-Markovian quantum dynamics of a system cou-
pled to a large number of vibrations (few hundreds), without
relying on any perturbative approach. Moreover, it efficiently
retains all information about the vibrational modes of the envi-
ronment, enabling us to identify and visualise the often com-
plex chain of environmental processes that drive ultra-fast dis-
sipative dynamics.

Here we use our TTNS formalism to explore the dynam-
ics of systems prepared far from equilibrium, such that excess
vibrational energy could potentially promote transient exci-
tonic dynamics that lead to new outcomes, which would not
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occur for band-edge excitation (i.e. no excess vibrational en-
ergy). The role of such ‘hot’ states has been a subject of de-
bate in the literature, in particular regarding the process of
charge transfer and separation, in materials used for organic
photovoltaics14,15,37,38. However, their importance extends
to several temperature-activated processes, such as endother-
mic singlet exciton fission39 and energy transfer in biologi-
cal systems40,41. Our results indicate that excess energy can
have a large impact on the early timescales of non-equilibrium
dynamics, leading to very different yields for the process of
charge transfer in a molecular dimer of the organic semicon-
ductor tetracene which we focus on in this work. Perhaps
most intriguingly, we find that initial quantum states where
low-frequency modes are excited preferentially lead to greater
charge transfer yields, due to robust, mode-generated quantum
coherence between the initial exciton and the charge trans-
fer state. Indeed, modes of different frequencies have been
discussed to play different roles in the coherent dynamics of
charge transfer42, while the electron mobility in a Holstein
model has been shown to strongly depend on the initial vi-
brational preparation43. We relate the behaviour observed in
our system to the different pathways of vibrational relaxation
which the system follows, depending on the energy of the
excited vibrations. Overall, we believe that our study sug-
gests a more general principle for engineering the dynamics of
open quantum systems, and helps open a way to understand-
ing how excess energy, heat generation, work can be managed
in quantum optoelectronic devices. Encouragingly, recent ex-
perimental advances in the ultra-fast preparation and control
of particular vibrational modes in excited states, including the
exploitation of ultra-strong light-vibration coupling (polari-
tons), suggest that the underlying microscopic physics now
available in simulations of quantum internal conversion may
be tested in the relatively near-term44,45.

The structure of this paper is as follows. In section II we
outline the used methods. Section II A provides a general in-
troduction to tensor network methods for studying the dynam-
ics of open quantum systems, as they have been developed
both in previous and in this work. Section II B deals with the
specifics of applying this formalism to a molecular system, for
which it is necessary to obtain its electronic and vibrational
properties. The results on the ultra-fast dynamics of charge
transfer in this molecular system are presented in section III,
comparing the cases of having finite or zero excess energy in
the system, under different conditions. The conclusions of our
work are finally given in section IV.

II. METHODOLOGY

A. Tensor Networks

Matrix product states

In order to develop some intuition for the tree-tensor net-
work state (TTNS) ansatz that we shall use to simulate molec-
ular open system dynamics, we will begin with a simpler illus-

tration using matrix product states (MPS). A comprehensive
review of the properties and uses of MPS, as well as their fun-
damental links to Density Matrix and Wilsonian Renormalisa-
tion Group algorithms, can be found in Ref.32. Let us consider
a one dimensional many-body system of L (distinguishable)
interacting particles, each of which is localised on a lattice
‘site’ k and has a local (non-interacting) Hilbert space basis
{|nk〉} of dimension dk. The exact many-body wave function
may be formally written in the Kronecker product basis as:

|Ψ〉=
dk

∑
{nk}=1

Ψn1,...,nL |n1, ...,nL〉 , (1)

where |n1, ...,nL〉 is shorthand for the tensor product |n1〉 ⊗
|n2〉 ...⊗|nL〉, and the sum runs over all possible products of
nk. The multidimensional array, here referred to as a tensor,
Ψn1,...,nL contains the probability amplitudes for all possible
states of the chain. As the number of particles grows, the
number of elements stored in this tensor scales as dL

k , and will
quickly become too large for practical computations. This is
often called the curse of dimensionality. However, by itera-
tively applying singular value decomposition (SVD), any |Ψ〉
may be written as a product of rank three tensors, known as a
Matrix Product State (MPS)32:

|ΨMPS〉=
dk

∑
{nk}=1

An1 · ... ·AnL |n1, ...,nL〉 . (2)

Each of these tensors Ank has dimensions Dk−1 x Dk x dk, with
Dk−1,Dk referred to as the left and right bond dimensions,
and dk the bond dimension of the local Hilbert space. The
maximum value of Dk encodes the amount of entanglement
between neighbouring sites. Since for every configuration the
tensors must multiply into a scalar, we have the boundary con-
dition: D1 = DL = 1. The procedure of writing a many-body
wavefunction as an MPS is summarised in Figure 1. The lo-
cal Hilbert space of each site may be compressed by using an
optimised boson basis (OBB)46,47 with dOBB,k << dk:

Ank =

dOBB,k

∑
ñk

AñkVnk,ñk (3)

Once a state has been written as an MPS, any variational op-
timisation or time-evolution may be performed by ‘sweeping
along the chain’, i.e. updating one tensor at a time, in a man-
ner similar to density matrix renormalisation group (DMRG)
approaches32. The MPS approach thus benefits from the re-
duction of the problem to a sequence of single site problems
and the storage and manipulation of a number of matrices that
scales linearly with system size. When we account for the
overheads due to the contraction of tensors, single value de-
composition, etc., the effective scaling becomes cubic in sys-
tem size, but this is still a vast improvement on the previous
exponential scaling. Discussions and bench marking data re-
lated to system sizes, convergence, and CPU times for spin-
boson-like systems can be founds in Refs.33,47.
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FIG. 1: A Matrix Product State (MPS) is constructed from a
many-body wavefunction by applying Singular Value

Decomposition (SVD) iteratively.

Systems interacting with a vibrational environment

Let us examine the case of a system which is in contact
with a vibrational ‘bath’, i.e. a set of oscillators with which
it can exchange energy. The Hamiltonian of such a system
may be schematically represented as in Figure 2 (left). Such
a system does not have a one-dimensional architecture which
would allow a one-to-one match between the different com-
ponents of the Hamiltonian and the MPS tensors. However,
even for such a system, the problem may be recast in that
of a one-dimensional system using an orthogonal polynomial
mapping48. Such an approach has previously been employed
to study the well known Spin Boson Model (SBM) in the case
where it is coupled to an environment of oscillators47,49,50.
This process is visualised in Figure 2. The bond dimension
between the system tensor and the environment chain (Dh),
may in principle be different from the intra-chain bond di-
mension (D).

Similar to the case of the SBM, this approach of represent-
ing a system interacting with a bath for oscillators has previ-
ously been employed for molecular systems33. However, in
such a system, different molecular vibrations can have very
different effects on the system states, e.g. only shifting the en-
ergies of particular levels, or only coupling specific states to
each other. It is therefore necessary to separate molecular vi-
brations into different groups, which in33 approximately cor-
respond to different irreducible representations of the molec-
ular point group. However, when there are no obvious molec-
ular symmetries to exploit, this grouping of vibrations may
still be performed in a rigorous manner by using the machine
learning technique known as k-means++ clustering51.

In order to better understand this procedure, let us work
with a linear vibronic Hamiltonian which describes the cou-
pling of the system states to the vibrations:

Hm,n = Hm,n
el +∑

k
W m,n

k Qk +∑
k

∆∆ ¯̄hωk

2
(− ∂ 2

∂Q2
k
+Q2

k), (4)

where Qk are the dimensionless displacements along normal
mode k, indicating the contribution of that mode to the molec-
ular deformation. The matrices Wk give the first order cou-
plings between the system states due to deformation along
mode k, and will hence be referred to as vibronic coupling
matrices. In terms of creation and annihilation operators:

H = Hel +∑
k
(Wk

a†
k +ak√

2
+ ¯̄̄hωka†

kak). (5)

By normalising the coupling matrices Wk as:

(Wmn)k = (Ŵmn)kλk, (6)

the matrix (Ŵmn)k contains the coupling pattern between the
system states due to displacement along mode k, while the
constant λk describes the coupling strength.

For molecular systems, the number of vibrational modes
may be of the order of a few hundreds, it is therefore crucial
to reduce the computational cost of a time-evolution. By using
the machine learning technique k-means++51, we can identify
patterns among the matrices Wk, splitting them into several
groups. To do so, the normalised matrices Ŵk are represented
as vectors on a high-dimensional unit sphere, and then pro-
jected on two dimensions using t-distributed stochastic neigh-
bour embedding (t-SNE)52. The k-means++ algorithm assigns
a centroid matrix W̄i to each of the created groups i, represent-
ing the effect of the group of modes on the system. This is vi-
sualised in Figure 3, for the case of the molecular system stud-
ied in this work (see below). The individual modes still retain
their different coupling strengths λk, but now act as one ‘en-
vironment’, which can be transformed into a one-dimensional
chain of oscillators using an orthogonal polynomial mapping.
Hence the linear vibronic Hamiltonian may be written in its
final form:

Hstar = Hel +∑
i

W̄i ∑
k

λi,k
b†

i,k +bi,k√
2

+Hc,i, (7)

where Hc,i is the Hamiltonian of the transformed vibrational
modes of chain i. The creation and annihilation operators
b†

k ,bk now refer to the ‘chain modes’ which result from the
orthogonal polynomial transformation of the original system
vibrations.

Time evolution and tree tensor network states

Once we apply an orthogonal polynomial mapping to every
vibrational environment of the linear vibronic Hamiltonian
and bring it in the form of Equation 7, it may be schematically
represented as in the left hand side of Figure 4. We represent
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FIG. 2: A system interacting with a set of oscillators (left) may be transformed into a ‘chain architecture’ using an orthogonal
polynomial mapping U. The new modes are linear combinations of the initial ones, and we refer to them as ‘chain modes’.

System

Vibrational 
Environment

FIG. 3: Clustering of molecular vibrations using k-means++51. We find that a minimum of six clusters is required to obtain
converged dynamics for our system of study. The modes belonging to the different clusters are represented using different

colours.

the many-body wavefunction as a tensor network which re-
sembles this same architecture; this is essentially several MPS
connected to each other through the central system (red) ten-
sor. We refer to this wavefunction as the ‘star MPS’.

The time-evolution of a wavefunction written as a star MPS
in Figure 4 (left), may be done using the time-dependent vari-
ational principle33,53. In short, each tensor is sequentially
time-evolved using a local effective Hamiltonian, which is
constructed by contracting the full many-body Hamiltonian
with all MPS tensors which are not currently being updated.
Unfortunately, this star MPS suffers a curse of dimensional-
ity: due to being connected to each other through the central
tensor, all possible environment configurations are entangled,
making its size to scale exponentially with the number of en-
vironment chains.

In order to address the exponential scaling problem, the
star MPS tensor might be further decomposed into a number
of smaller, entanglement renormalisation tensors (ER nodes),
which describe the inter-environment entanglement54. The

entanglement of the various bipartitions of the system tensor is
quantified by calculating the corresponding von Neumann en-
tropy. The tensors are then connected into a tree structure, the
tree tensor network state (TTNS), according to the coupling
structure of the star Hamiltonian, in order to minimise the to-
tal von Neumann entropy. To find the optimal tree structure,
an initial simulation with the star MPS is performed, allowing
us to assess the entropy of various possible tree structures, and
construct the one with the minimal value. The TTNS obtained
through this analysis allows for using the smallest possible
values for bond dimensions, in order to capture the entangle-
ment of the system. The size of this tensor network now scales
linearly, which is a significant improvement compared to the
initial exponential scaling. The process for determining the
TTNS is summarised in Figure 4.

At this stage, it is important to remember that the time-
evolution is performed on the system after the application of
an orthogonal polynomial mapping was applied to each of the
vibrational environments. Therefore, in order to obtain the
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FIG. 4: By means of an orthogonal polynomial transformation, k-means++ clustering and entanglement renormalisation (ER)
we transform the initial wavefunction of the system in a vibrational bath, into a tree tensor network state (TTNS).

time-dependent observables of the original system, an inverse
mapping is required in each case.

Constructing initial states

Finally, we would like to discuss a few ways of constructing
an initial TTNS, which correspond to various different phys-
ical initial conditions. Since in this work we are concerned
with vibrational relaxation and the effects of adding excess
energy in the system, i.e. initially exciting not only the ‘sys-
tem’ but also certain vibrations of the ‘bath’, let us consider
a few possible ways of defining a vibrationally excited TTNS
as our initial state.

1. Band-edge excitation. By band-edge excitation, we
mean an initial state where a system state is excited, however
no excess energy is added to the vibrational bath. By denoting
each tensor within our MPS representation as A(Dk−1,Dk,dk),
we set A(1,1,1) = 1 and all other values to zero. Therefore,
from the sum of Equation 2, only the term with all vibrational
modes in their ground state, and the system in the first of the
two states, survives. We remind at this point that dk denotes
the bond dimension of the local Hilbert space of site k, while
the bond dimensions Dk−1,Dk encode the entanglement which
the MPS can describe between neighbouring sites. For ten-
sors representing vibrations, we find that a maximum value of
dk = 40 leads to converged dynamics for all cases examined
in this work. This means that we allow each site to accommo-
date up to 40 Fock states. For the special case of the two-state
exciton system d = 2. We also find that for the intra-chain and
system-environment entanglement (see Figure 2), the bond di-
mensions D = 35 and Dh = 50 produce converged results re-
spectively (refer to Appendix A for convergence tests).

2. Exciting a ‘chain mode’. The most straightforward way
of adding excess energy to the system is by adding a quantum
of energy to one of the tensors l representing vibrations on the
right hand side of Figure 4: Al(1,1,1) = 0 and Al(1,1,2) = 1,
i.e. we populate the first excited state (second Fock state,
dk = 2) of the mode at site l. However, one has to bear in
mind that these are not the original, physical vibrations of the
system, but the ones resulting from the orthogonal polynomial
transformation. The energy corresponding to one quantum of

such a chain mode may be derived analytically, as done in47.
Since the excitation of these ‘chain modes’ does not corre-
spond to physical reality, we do not pursue this avenue, but
rather develop two different methods for adding energy to the
original molecular vibrations.

3. Incoherent (quantised) excitation of a normal mode.
Let us start by describing the example case of defining an ini-
tial MPS, which describes a state with one quantum of excita-
tion added to mode k of the original system. The orthogonal
polynomial transformation discussed previously, may be used
to write the annihilation (or creation) operator of ‘chain mode’
i, in terms of the annihilation operators of the physical normal
modes:

bi = ∑
k

Uikak, (8)

Since the mapping U is unitary, it is straightforward to obtain
the operators of the original modes in terms of chain modes:

ak = ∑
i

U∗kibi. (9)

Therefore, the state with one quantum on mode k is a linear
combination of states with one quantum on the various chain
modes i, and coefficients given by the inverse of the orthogo-
nal polynomial mapping (U∗ki =Uki):

|1〉k = a†
k |0〉= ∑

i
Ukib

†
i |0〉 . (10)

To write this in the form of an MPS, one has to realise a way
in which the sum over all possible configurations of Equa-
tion 2 produces exactly the state of Equation 10. All the con-
figurations describing states which do not contribute to this
sum, for example states with two quanta on different modes,
should vanish. To achieve this for the case of one quantum,
one may define the tensors within the chain as:

Ai(:, :,1) =
[

1 0
0 1

]
,Ai(:, :,2) =

[
0 Uik
0 0

]
(11)
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Since matrices need to multiply into a scalar for each con-
figuration, the last site L of a chain is always represented by
column vectors:

AL(:,1) =
[

0
1

]
,AL(:,2) =

[
Uik
0

]
. (12)

The first site of the chain is the tensor representing the sys-
tem, which is correspondingly represented as a row vector of
dimensions 1× 2 in this case. In this manner, if site i is in
its excited state represented by the second the matrix of Equa-
tion 11, then if any other site is in its excited state the probabil-
ity of encountering this state is zero, since the product of two
such matrices is zero. Only states with a single excited chain
mode multiplying chain modes in their ground state will sur-
vive in the sum of Equation 2, and will have a prefactor of Uik.
Therefore we obtain exactly the state of Equation 10. By con-
sidering the last site of the chain L, this becomes rather easy
to see, by asking the question of which 2× 2 matrix needs
to operate on each column vector in order for the product to
vanish/survive.

Before generalising to N quanta excitation, let us consider
one more example case of adding two quanta on mode k:

|2〉k =
1√
2
(a†

k)
2 |0〉= 1√

2
(∑

i
Ukib

†
i )

2 |0〉 . (13)

Other than the possibility of having two quanta on chain mode
i, we now also need to allow for two different chain modes i
and j accommodating a quantum each, as described by the
cross terms which appear once we take the square of the sum
of Equation 13. It is easier to start from the MPS tensors of
the last chain site:

AL(:, :,1) =

0
0
1

 ,AL(:, :,2) =

 0
Uik
0

 ,AL(:, :,3) =

U2
ik√
2

0
0

 ,
(14)

which allow for the possibility of having two, one or zero
quanta on the last chain mode of a chain. The vector AL(:, :,3)
needs to only give non-zero entries once it encounters matri-
ces of other sites in their ground state, AL(:, :,2) in the case
where the other sites have one or zero quanta, and AL(:, :,1) in
all cases. Therefore, for the intermediate sites i of the chain:

Ai(:, :,1) =

1 0 0
0 1 0
0 0 1

 ,Ai(:, :,2) =

0 Uik 0
0 0 Uik
0 0 0

 (15)

,Ai(:, :,3) =

0 0 U2
ik√
2

0 0 0
0 0 0

 .
From the way we defined the initial MPS for the cases of

one and two quanta, the reader may already start to identify
a pattern going towards higher excitations. We generalise for

the case of N quanta excitation by defining the non-zero en-
tries of the initial MPS as:

AL(N−m+2,1,m) =
Um−1

ik√
(m−1)!

, (16)

where m runs over all integers from 1 to N + 1. For interme-
diate chain sites i:

Ai(1,N +1,N +1) =
Um−1

ik√
(m−1)!

,Ai(l, l,1) = 1, (17)

where l obtains integer values from 1 to N +1. Then:

Ai(N,N +1,m) =
Um−1

ik√
(m−1)!

,Ai(1,m,m) =
Um−1

ik√
(m−1)!

(18)
and finally:

Ai(1,m,m) =
Um−1

ik√
(m−1)!

,Ai(1+ j,m+ j,m) =
Um−1

ik√
(m−1)!

,

(19)
with j obtaining all integer values from 1 to N−m. As op-
posed to the case of exciting a coherent state, which is a linear
combination of different Fock states and is described in the
following subsection, the process outlined here only results
in the excitation of one Fock state. To differentiate between
the two, we refer to this case as ‘incoherent’ excitation, as
opposed to the coherent excitation of the next subsection.

4. Coherent (continuous) excitation of a normal mode.
Rather than adding a set number of quanta to a selected normal
mode, one can displace a vibration continuously, by setting its
initial dimensionless displacement Q appearing in the linear
vibronic Hamiltonian of Equation 4 to a finite value Q = α .
However, how to do this when working in the chain represen-
tation might not be immediately obvious.

In order to create a displaced state |α〉 from the vacuum
state |0〉 one may apply the displacement operator:

D(α) = exp(αa†−α
∗a), (20)

as |α〉 = D(α) |0〉. The state |α〉 is commonly referred to as
a coherent state. The expectation values of its position and
momentum oscillate just like those of a classical harmonic os-
cillator initially displaced by α , and it corresponds to the state
excited by a coherent laser pulse55.

One may use the inverse orthogonal polynomial mapping
of Equation 9, and write the above displacement operator for
mode k in terms of the chain modes:

Dk = ∏
i

exp(α ·Uki(b
†
i −bi)). (21)



7

+

-

|CTm  n>

+ -

|LEm >

LE

CT
0.17 eV

FIG. 5: Studied system includes an electronic system of two
excitons, a local exciton (LE) and a charge transfer exciton

(CT), coupled to an environment of 156 oscillators. The
oscillators correspond to molecular normal modes. The

indices m and n refer to the individual tetracene monomers.

Therefore, we only have to apply this operator to the MPS de-
fined for the case of band-edge excitation above, in order to
obtain an initial state where mode k is displaced by α . Each
of the exponential operators appearing in the product of Equa-
tion 21 may be written as a di×di square matrix. By writing
the coherent state in the basis of Fock states:

|α〉= e−
|α|2

2 ∑
n

αn
√

n!
|n〉 (22)

one realises that for larger n values, the terms of the sum be-
come increasingly small. It is therefore possible to truncate
a number of terms, corresponding to reducing the second di-
mension of the matrix representation of the exponential opera-
tors of Equation 21. This is similar to the transformation of the
Fock basis into the optimised boson basis through the matrices
V appearing in Equation 3, therefore we denote these trun-
cated exponential matrices as having dimensions d × dOBB.
We find that choosing dOBB = 20 allows for correctly describ-
ing initial coherent states with displacements of up to α = 6,
while still maintaining a reasonable computational cost.

B. Studied System

We study a covalent dimer of the organic semiconduct-
ing molecule tetracene, shown in Figure 5. Tetracene is a
prototypical organic semiconductor, best known for its abil-
ity to efficiently undergo an ultra-fast process known as sin-
glet fission56,57, despite the process being endothermic58,59.
For covalently linked systems as the one at hand, it is com-
mon practice to introduce Mesityl side groups for solubility
reasons60. We therefore refer to this di-tetracene-Mesityl sys-
tem as DT-Mes in short.

We optimise the geometry of DT-Mes using density func-
tional theory at the B3LYP, cc-pVDZ level. We find that
the molecule assumes an orthogonal configuration due to
the steric repulsion between the hydrogen atoms on the two
tetracene monomers. The molecular vibrations are obtained
at the same level of theory. Concerning the excited states of
this system, we perform PPP calculations61,62 at the ground

state geometry, which have successfully been used in the past
to describe conjugated and singlet fission systems56,63,64. Be-
cause the Mesityl side groups break the conjugation of the
molecular structures, we truncate them in order to be able to
apply PPP theory. However, both excited states considered in
this study are localised on the tetracene monomers (see be-
low), so this truncation has a negligible effect on the excited
state energies.

Due to the approximate C2 symmetry of the molecule, we
find that the excited states transform either as B or A irre-
ducible representations of the point group. There are two
kinds of excitations in such a system, visualised in Figure 5:
a local exciton (LE), i.e. a state where a bound electron-hole
pair is localised on a monomer, and a charge transfer (CT) ex-
citon, where the electron and hole are localised on different
monomers. Charge transfer excitons are particularly relevant
for light-harvesting applications, as they are the precursor to
a charge separated state. In terms of the excitons visualised in
Figure 5, the symmetry adapted states may be written as:

|LEA〉=
1√
2
(|LEm〉+ |LEn〉) (A symmetry)

|LEB〉=
1√
2
(|LEm〉− |LEn〉) (B symmetry)

|CTA〉=
1√
2
(|CTm→n〉+ |CTn→m〉) (A symmetry)

|CTB〉=
1√
2
(|CTm→n〉− |CTm→n〉) (B symmetry),

(23)
where the indices m and n refer to the individual tetracene
monomers.

The LE state of B symmetry is the only state with a fi-
nite oscillator strength among the above. Since we are con-
cerned with the dynamics following photoexcitation of the
bright state, we simplify the problem by only including the
bright LE state, which from now on we refer to simply as LE.
From the calculation of the vibronic couplings (see below)
between LE and the two CT states, we find that it is predom-
inantly coupled to the CT state of B symmetry. We therefore
choose CTB as the second excited state of our model. This
two-state model is sufficient to obtain insights on the mecha-
nism of vibrational relaxation, which is the aim of this work.
However, in general, the A symmetry states can be of impor-
tance for other photophysical processes as singlet fission.

The CT state lies 0.17 eV above the LE state, hence charge
transfer from the bright exciton is an endothermic process.
At the ground state geometry, there is a small but finite elec-
tronic coupling between the LE and CT states, and in the basis
{|LE〉 , |CT〉}, the electronic Hamiltonian may be written as:

Hel =

[
2.39 −0.014
−0.014 2.56

]
(eV). (24)

The fact that the electronic Hamiltonian is not diagonal means
that the adiabatic states of the system are linear combinations
of the LE and CT states. However, since this coupling is small,
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the first and second excited states are of almost pure LE and
CT character respectively. In this basis, the reduced density
matrix of the system may be written as:

ρnm =

[
ρLE,LE ρLE,CT
ρLE,CT ρCT,CT

]
, (25)

where the diagonal entries give the probability of finding the
system in the LE or CT state, while the off-diagonal element
is the quantum coherence between the two excitons.

The two excitons are coupled to a bath of oscillators, which
are the molecular normal modes. Out of the 210 vibrational
modes of the truncated DT-Mes structure, we include a to-
tal of 156 in our model. These are modes with frequencies
between 100 cm−1 and 1600 cm−1, i.e. we exclude very high-
frequency modes, mostly C-H stretches, which are not rel-
evant for the dynamics, as well as very slow low-frequency
modes, which are not strongly displaced in the ultra-fast
timescale. In addition, low-frequency modes are known to
be strongly anharmonic65, and cannot be treated within the
harmonic approximation, on which the linear vibronic model
relies.

In order to obtain the coupling between the electronic states
upon displacement of the vibrational modes, i.e. the vibronic
couplings, we displace the molecular structure in the positive
and negative direction of each normal mode q, and recalcu-
late the electronic states using PPP calculations. The coupling
element between two states is then given by:

Wmn =
〈m|H (ro +hq) |n〉−〈m|H (ro−hq) |n〉

2h
. (26)

We thus construct a matrix W for each of the 156 vibrations
included in the model, and apply our previously described
clustering algorithm on them. We find that in order to ob-
tain converged results, a minimum of six clusters is required,
schematically depicted in Figure 3.

The above concludes the necessary steps for parametrising
the linear vibronic Hamiltonian of equation 7 for DT-Mes. We
now proceed to use this Hamiltonian for a time evolution of
the system.

III. RESULTS

A. Band-edge excitation

We start by discussing the population dynamics upon band-
edge excitation of the two excitons, i.e. with the system ex-
cited and the vibrational modes in their ground state. Figure 6
visualises these population dynamics. For excitation of the LE
state, we barely see any CT formation. On the other hand, ex-
citing the higher-energy CT state leads to relaxation towards
LE, within a timescale of approximately 1 ps.

In molecular systems such as the one studied here, the CT
state is typically dark60 , so exciting it directly is not possible.
Instead, one has to excite a ‘hot’ LE configuration, i.e. excite

LE
CT

ii

t (fs)

(a) LE excitation.

t (fs)

ii

(b) CT excitation.

FIG. 6: Population of the electronic states in real-time, in the
cases of an initially excited LE and CT state.

LE beyond its band-edge, giving excess energy to molecu-
lar vibrations. This can open a channel to CT formation. To
identify specific vibrations which couple the LE and CT exci-
tons, we plot in Figure 7 the amplitude of modes displaced by
Q = 0.2 or more over the course of the relaxation from CT to
LE. We find that a low-frequency mode, with a frequency of
ω = 276 cm−1, is the most active motion. Regarding the real-
space motion of this mode, it involves a strong oscillation of
the central bond connecting the two tetracene monomers. The
strong displacement of this mode upon the CT to LE conver-
sion makes it a good candidate to excite, in order to study the
effects of excess energy on CT formation. From now on, we
refer to this vibration simply as ‘the low-frequency mode’. Its
coupling constant appearing in the linear vibronic Hamilto-
nian of equation 7 is equal to λ = −289 cm−1.

Furthermore, in order to compare the effects of adding ex-
cess energy to the system through a high- and low-frequency
mode, we choose the vibration at ω = 1389 cm−1 as an-
other candidate for excess energy excitation. We refer to this
mode as ‘the high-frequency mode’. This is a breathing mo-
tion of the tetracene carbon rings. Its coupling constant is
λ = 256 cm−1, a value not very far from the one of the low-
frequency mode introduced above. We can hence be confident
that any differences between the cases of exciting the low-
and high-frequency modes are not due to differences in the
magnitude of the exciton-phonon coupling constants. The two
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FIG. 7: Amplitude of the most displaced molecular
vibrations, during 2 ps of dynamics following CT excitation.

modes also belong to the same group of modes from the clus-
tering algorithm, so the pattern of their coupling expressed
through the matrix W of equation 7 is identical.

B. Incoherent excitation

For the case of adding a set number of quanta to a Fock state
of the original vibrations of the molecular system, we only
find very small effects on the CT population within 2 ps of
dynamics. This is shown for the case of adding quanta to the
low- and high-frequency modes in Figure 8. However, as we
show in the following section, this is not the case for coherent
excitation of a normal mode, underlining the fact that adding
excess energy to a system is not enough by itself, but it needs
to be done in the right way in order to facilitate processes of
interest.

C. Coherent excitation

For the case of exciting the two modes coherently as pre-
sented in the Methodology section, we start by visualising the
population of the two exciton states. Figure 9 shows the re-
sulting dynamics, once the high- and low-frequency modes
are displaced by Q = 4. From the linear vibronic Hamiltonian
of equation 7, it becomes apparent that for the same displace-
ment, the high-frequency mode carries significantly more en-
ergy than the low-frequency vibration. For Q = 4, the two
modes carry 0.27 eV and 1.36 eV of energy respectively.

Comparing the two graphs of Figure 9, we see that in both
cases excess energy opens a channel to CT formation, unlike
the case of incoherent excitation summarised in Figure 8. It
therefore becomes clear that in order for excess energy excita-
tion to have an effect on the population dynamics of the two-
level system, one needs to induce a coherent displacement of
vibrational modes, i.e. excite a wavepacket with finite dis-
placement Q. The dynamics towards this CT formation can
take longer than the 2 ps window that we have examined thus
far, we therefore simulated the system for a total of 4.5 ps in
the cases of coherent excitation.

t (fs)

ii

LE
CT

(a) Excess energy in a high-frequency mode.

ii

t (fs)

(b) Excess energy in a low-frequency mode.

FIG. 8: Population dynamics upon LE excitation with excess
energy added in the system incoherently, through (a) three

quanta of a high-frequency mode (≈ 0.51 eV) and (b) seven
quanta of a low-frequency mode (≈ 0.24 eV).

Furthermore, the two cases of coherent excitation in Fig-
ure 9 exhibit some striking differences, both at early and at
later times. Let us start by discussing the early-time (< 100 fs)
differences between the two cases. Figure 10 provides a close
view of the CT population during these first 100 fs of dy-
namics. We observe that exciting the low-frequency mode
leads to a stronger increase of the CT population (approxi-
mately 35% of CT at 90 fs), in what seems to be an almost
constant population growth. Instead, in the high-frequency
case, the CT population is oscillatory and does not go be-
yond 5%. We believe this difference to be due to the time
which is required for the crossing event from the LE to the
CT surface to occur. The rate of the LE to CT population
transfer is dictated by the off-diagonal entries of the linear
vibronic Hamiltonian of Equation 7. All vibrational modes
contribute to this value through the linear term, however it is
the electronic coupling of 14 meV which appears in the elec-
tronic part of the Hamiltonian (see Equation 24) that domi-
nates. This electronic coupling dictates a timescale of approx-
imately 300 fs for the crossing event from the LE to the CT
surface, a timescale which is likely to be slightly faster when
accounting for the effect of all modes. The period of the high-
frequency mode is equal to 24 fs, therefore the wavefunction is
only in the vicinity of the crossing for a short time, compared
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t (fs)

ii

LE
CT

(a) Excess energy in a high-frequency mode.

ii

t (fs)

(b) Excess energy in a low-frequency mode.

FIG. 9: Population dynamics upon LE excitation with excess
energy added in the system coherently, through (a) a high-
and (b) a low-frequency mode vibration. A dimensionless

displacement Q = 4 was chosen for both vibrations,
corresponding to excess energy of 1.36 eV and 0.27 eV

respectively.

to the low-frequency mode which has a period of 120 fs. As
a result, only minor population transfer can occur during one
period of the high-frequency mode, unlike the low-frequency
case where the wavefunction develops significant CT charac-
ter at these early timescales. This timescale-based argument
is further supported by the fact that the energetics of the two
excited states are almost identical along the high- and low-
frequency modes: indeed, from the linear vibronic Hamilto-
nian of Equation 7 it becomes obvious that along modes that
share the same coupling matrix Wi and have similar λ values,
the energy gap between the excited states is always similar
and cannot explain the observed differences.

Moving our focus to the long-time dynamics and back to
Figure 9, for the excitation of the high-frequency mode, the
dynamics are dissipative, with a gradual CT formation over
approximately 2.5 ps. In the low-frequency case, the rapid CT
formation at early times is followed by coherent oscillations,
with a long damping timescale. Even at 4.5 ps coherent oscil-
lations are still present. Despite the fact that the excess energy
used to excite the high-frequency mode surpasses the one used
to excite the low-frequency mode by more than 1 eV, we see
that the final yields of CT population are very close.

t (fs)

ii

(a) Excess energy in a high-frequency mode.

ii

t (fs)

(b) Excess energy in a low-frequency mode.

FIG. 10: Population of the CT state at early times, once
excess energy is added in (a) a high-frequency and (b) a

low-frequency mode.

We would now like to further understand these long-time
results. For both high- and low-frequency mode excitation,
we plot in Figure 11 the charge transfer yield at 2 ps of dy-
namics, for a range of values of the excess energy. The range
of energies is limited by the maximum mode displacement
Q we can simulate, related to the maximum bond dimension
of the local Hilbert space of the MPS tensors (see Methodol-
ogy). This is why for the case of low-frequency modes, the
maximum excess energy we can simulate is smaller than for
high-frequency modes. However, we clearly see from Fig-
ure 11 that exciting the low-frequency mode leads to signifi-
cantly larger CT yields compared to the high-frequency case,
at the same excess energy.

The qualitative differences between the long-time popula-
tion dynamics of Figure 9 (dissipative vs coherent oscilla-
tions), motivate us to plot the quantum coherence between the
two exciton states in real-time. The coherences in Figures
12(b) and 12(c) are clearly different, and we also plot the
coherence for band-edge excitation for comparison, in Fig-
ure 12(a). For the excitation of a low-frequency mode, the
coherence oscillations have an amplitude close to 0.4 (a maxi-
mally entangled state has a value of 0.5), and are only damped
very slowly. When exciting a high-frequency mode, the coher-
ence between the exciton states is more strongly damped and
never goes beyond a value of 0.2, even at early times. The
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FIG. 11: Charge transfer yield at 2 ps following
photoexcitation, for various values of the excitation energy,

which is pumped into the system through low- or
high-frequency modes. All the presented data refer to

coherent excitation. For incoherent excitation, yields never
surpass 5-6%.

dissipation of coherence ceases at approximately 2.5 ps, when
the charge transfer process of Figure 9(a) is mostly complete.
No such coherence dissipation is observed in Figure 12(a),
where no excess energy is present. This leads us to the conclu-
sion that the dissipation of coherence at long times is related
to the vibrational relaxation which follows excess energy ex-
citation. However, the differences between Figure 12(b) and
Figure 12(c) point to the fact that this relaxation process can
be significantly different, depending on whether a low- or a
high-frequency vibration was initially excited, as no signif-
icant coherence dissipation is present for the low-frequency
case. The relaxation pathway of the system seems to have a
direct impact on its ability to maintain a superposition state at
long times, with the excitation of a low-frequency mode ‘pro-
tecting’ the quantum coherence between the two excitons, and
allowing for a more efficient energy transfer. However the mi-
croscopic difference for this different coherence behaviour is
still not clear at this stage.

A microscopic understanding of the different coherence-
related properties may be obtained by considering the details
of the vibrational relaxation process. Once we excite a high-
frequency (i.e. high-energy) mode, the system will start to
relax towards a Boltzmann distribution, where low-energy vi-
brations are predominantly displaced. Within our model pic-
ture, we expect the amplitude of low-frequency vibrations
to increase with time. Indeed, as we find in Figure 13(a),
the most significant increase in vibrational amplitude ∆Qmax
over the course of 4 ps, occurs for low-frequency modes.
As discussed when considering the early-time differences
between exciting low-frequency and high-frequency modes,
low-frequency vibrations facilitate more efficient crossings
from the LE to the CT surface. Therefore, the gradual vi-
brational relaxation towards low-frequency modes coincides
with the increase in the CT population observed in Figure 9(a).
There is little change in the amplitudes of vibrations between

LE
,C
T

t (fs)

(a) Band-edge excitation.

LE
,C
T

t (fs)

(b) High-frequency mode excitation.

LE
,C
T

t (fs)

(c) Low-frequency mode excitation.

FIG. 12: Quantum coherence between the LE and CT states,
for (a) band-edge excitation and excess energy excitation

through (b) a high- and (c) a low-frequency mode.

2 ps and 4 ps, suggesting that vibrational relaxation is mostly
complete. Indeed the population of the CT state also reaches
its maximum in these timescales.

Overall, there is a large number of vibrations towards which
the excess energy relaxes once we excite a high-frequency
mode. However, we note that our model only includes an
implicit anharmonicity; the modes are only coupled to each
other through the electronic system and not explicitly, mak-
ing the transfer of the vibrational energy slower than if mode-
mode energy transfer was included in our description. It is
crucial in order to obtain realistic timescales for vibrational re-
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(b) Low-frequency mode excitation.

FIG. 13: Vibrational relaxation upon excitation of (a) the
high-frequency and (b) the low-frequency mode. ∆Qmax
denotes the change in mode amplitudes over the studied

timescales.

laxation to include explicit anharmonicity in a model descrip-
tion. With the present approach, this would pose a significant
challenge, as the coupling between vibrational modes would
give rise to highly non-local interactions between MPS ten-
sors. We therefore comment on the qualitative characteristics
of the vibrational relaxation process, rather than the quantita-
tive timescales.

The change in mode amplitudes looks very different,
once excess energy excites a low-frequency vibration in Fig-
ure 13(b). The distribution of excited modes is now much
more localised around low frequencies. The mode which gets
strongly excited is degenerate with our low-frequency vibra-
tion of choice within 1 cm−1, so excess energy remains essen-
tially ‘trapped’ (the modes of molecular dimers such as the
studied one always go in pairs). Overall, only a small number
of other oscillators are activated within 4 ps.

The above observations allow us to build a mechanical ana-
log, which rationalises the process of vibrational relaxation,
and helps us understand the differences between low- and
high-frequency mode excitation at long times. This is visu-
alised in Figure 14. Jars of various sizes are placed in a grav-
itational field, connected to each other through a system of
pipes. Larger jars are placed higher up in the field, causing

an efficient water flow towards lower-lying jars. By initially
placing all of the available water in one of the high-lying jars,
we end up at intermediate times (i.e. before timescales rel-
evant at Boltzmann equilibrium), with a wide distribution of
water over the low-lying jars.

On the other hand, if we place all of the available water in
a low-lying jar, it can to some extent flow uphill through the
pipe system, however this is rather inefficient because of grav-
ity. Also, the flow to other low-lying jars is not at all affected
by the presence of the gravitational field. Hence for intermedi-
ate timescales, we have a distribution of water which is much
more localised compared to the case where we put all of the
water in a high-lying jar. We emphasise here that both initial
conditions will eventually lead to a Boltzmann equilibrium.

If we now substitute ‘water’ with energy, ‘jars’ of vari-
ous sizes, with modes of different frequencies, ‘pipes’ with
mode-mode coupling (anharmonicity), and ‘gravity’ with en-
ergy gradient, we get a model description of vibrational relax-
ation. Exciting a high-frequency mode results in relaxation to-
wards lower energy vibrations, a process which is assisted by
the existence of an energy gradient. Therefore, for intermedi-
ate timescales from adding excess energy to a high-frequency
mode, we end up with a wide distribution of the energy over
vibrational modes, predominantly of low-frequencies as seen
in Figure 13(a). Once any of these oscillators is excited, it
has a random phase, making it more and more difficult for
the the total wavefunction to maintain any well-defined phase
initially present. Therefore, the quantum coherence between
the involved exciton states dissipates away. This becomes
clear by comparing the slowly vanishing coherence of Fig-
ure 12(b) to that of the band-edge excitation dynamics in Fig-
ure 12(a). These intermediate configurations resulting from
high-frequency mode excitation are more incoherent, and ap-
proach the limit of incoherent excitation studied in section
III B.

For excitation of a low-frequency vibration, the limited
pathways towards other modes lead to a more localised dis-
tribution of the excess energy at intermediate timescales, as
visualised in Figure 13(b). It is therefore possible at these in-
termediate timescales to maintain the phase initially present in
the system. Hence the quantum coherence between the exci-
ton states is ‘protected’ for these intermediate timescales rel-
evant to ultra-fast processes, as seen in Figure 12(c).

IV. CONCLUSIONS

In this work, we have exhibited the implementation of a
theoretical framework, which allows us to simulate the ultra-
fast dynamics of organic structures upon photoexcitation. Our
tensor network approach allows us to perform a quantum
mechanical time evolution of the vibrational wavefunction,
which in turn makes it possible to visualise the real-time mo-
tion with atomistic level of detail. We have also developed
methods to simulate the effects of excess energy excitation
within the context of matrix product states.

We applied our methods to a covalently linked tetracene
dimer, studying intramolecular charge transfer, a process
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FIG. 14: A mechanical analog to our model for vibrational relaxation. A system of jars of different sizes, filled with water in a
gravitational field, and communicating through a system of pipes.

which is endothermic in this system. Not only have we found
that the final yield of charge transfer states strongly depends
on the excitation energy of the light pulse, but also on the way
this excess energy is introduced into the system. In partic-
ular, coherent excitation of a vibrational wavepacket opens
a channel to charge transfer, whereas incoherent excitation
only has a minor effect. We found the coherent excitation
of low-frequency modes to be a much more efficient way of
enhancing charge transfer, compared to the excitation of high-
frequency modes. This is due to the different pathways of vi-
brational relaxation in the two cases; low-frequency vibrations
have a more limited number of pathways towards a Boltzmann
equilibrium, leading to a more localised distribution of excited
oscillators in the intermediate timescales relevant for charge
transfer. Thus the quantum coherence between the bright and
charge transfer states is better preserved compared to the case
of exciting high-frequency modes, where we found the dy-
namics to be more dissipative, approaching the limit of inco-
herent excitation.

Experimentally, the effect of mode-selective excitation on
ultra-fast processes has been demonstrated in the past44,45. We
believe that our study of the underlying mechanisms of vi-
brational relaxation following excess energy excitation could
provide a guideline for future experimental work in this field,
potentially focusing on exploiting specific vibrations for en-
hancing the efficiency of processes utilised in devices.

Our results for the studied two-level system are general, and
will hold for any two-level system coupled with a bath of os-
cillators. As the system relaxes towards its Boltzmann equilib-

rium, the initial configuration, and in particular the part of the
system where excess energy may initially may be localised,
may have a strong effect on the properties at intermediate
timescales. In particular, initial configurations with excess en-
ergy in low-frequency vibrations lie closer to the final Boltz-
mann distribution, reducing the number of pathways the sys-
tem may follow towards equilibrium. Hence low-frequency
modes preserve quantum coherence more efficiently, making
them better candidates for the transfer of information.
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Appendix A: Convergence tests

We study the convergence of the dynamics simulations in
respect with the bond dimensions of the MPS. There are two
separate bond dimensions to consider: The first is the intra-
chain bond dimension (D), which encodes the entanglement
between the environment tensors, while the second (Dh) refers
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FIG. 16: Convergence of CT populations at 2 ps with respect
to simulation time step, for the case of excess energy

excitation of the high-frequency mode.

to the system-environment coupling (see Figure 2). We use
the yield of the CT state at 2 ps as an indicator for con-
vergence. We study the convergence of dynamics following
band-edge excitation of the CT state (akin to Figure 6(b)),
in Figure 15(a). The values which were used in the main
part of the paper are highlighted. We have also examined the
convergence in the case of adding excess energy to the high-
frequency vibrations, displacing it by Q = 2, and the results
are shown in Figure 15(b).

We have also tested the convergence of the dynamics fol-
lowing excess energy excitation of the high-frequency mode,
in respect with the time step of the simulation. The results are
shown in Figure 16. We use a time-step of 0.67 fs, despite the
fact that this value is not perfectly converged. This allows us
to significantly speed-up our calculations, and investigate the
results at longer timescales. Compared to the smallest value
for the time step of the simulations, the error in the CT yield
is smaller than 0.3%.
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