119 research outputs found

    Potentials of Plasma NGAL and MIC-1 as Biomarker(s) in the Diagnosis of Lethal Pancreatic Cancer

    Get PDF
    Pancreatic cancer (PC) is lethal malignancy with very high mortality rate. Absence of sensitive and specific marker(s) is one of the major factors for poor prognosis of PC patients. In pilot studies using small set of patients, secreted acute phase proteins neutrophil gelatinase associated lipocalin (NGAL) and TGF-β family member macrophage inhibitory cytokine-1 (MIC-1) are proposed as most potential biomarkers specifically elevated in the blood of PC patients. However, their performance as diagnostic markers for PC, particularly in pre-treatment patients, remains unknown. In order to evaluate the diagnostic efficacy of NGAL and MIC-1, their levels were measured in plasma samples from patients with pre-treatment PC patients (n = 91) and compared it with those in healthy control (HC) individuals (n = 24) and patients with chronic pancreatitis (CP, n = 23). The diagnostic performance of these two proteins was further compared with that of CA19-9, a tumor marker commonly used to follow PC progression. The levels of all three biomarkers were significantly higher in PC compared to HCs. The mean (¹ standard deviation, SD) plasma NGAL, CA19-9 and MIC-1 levels in PC patients was 111.1 ng/mL (2.2), 219.2 U/mL (7.8) and 4.5 ng/mL (4.1), respectively. In comparing resectable PC to healthy patients, all three biomarkers were found to have comparable sensitivities (between 64%-81%) but CA19-9 and NGAL had a higher specificity (92% and 88%, respectively). For distinguishing resectable PC from CP patients, CA19-9 and MIC-1 were most specific (74% and 78% respectively). CA19-9 at an optimal cut-off of 54.1 U/ml is highly specific in differentiating resectable (stage 1/2) pancreatic cancer patients from controls in comparison to its clinical cut-off (37.1 U/ml). Notably, the addition of MIC-1 to CA19-9 significantly improved the ability to distinguish resectable PC cases from CP (p = 0.029). Overall, MIC-1 in combination with CA19-9 improved the diagnostic accuracy of differentiating PC from CP and HCs

    Murine Pancreatic Adenocarcinoma Reduces Ikaros Expression and Disrupts T Cell Homeostasis

    Get PDF
    Background Maintenance of T cell immune homeostasis is critical for adequate anti-tumor immunity. The transcription factor Ikaros is essential for lymphocyte development including T cells. Alterations in Ikaros expression occur in blood malignancies in humans and mice. In this study, we investigated the role of Ikaros in regulating T cell immune balance in pancreatic cancer mouse models. Methodology and Principal Findings Using our Panc02 tumor-bearing (TB) mouse model, western blot analysis revealed a reduction in Ikaros proteins while qRT-PCR showed no differences in Ikaros mRNA levels in TB splenocytes compared to control. Treatment of naïve splenocytes with the proteasomal inhibitor, MG132, stabilized Ikaros expression and prevented Ikaros downregulation by Panc02 cells, in vitro. Western blot analyses showed a reduction in protein phosphatase 1 (PP1) and protein kinase CK2 expression in TB splenocytes while CK2 activity was increased. Immunofluorescence microscopy revealed altered punctate staining of Ikaros in TB splenocytes. Flow cytometry revealed a significant decrease in effector CD4+ and CD8+ T cell percentages but increased CD4+CD25+ regulatory T cells in TB splenocytes. Similar alterations in T cell percentages, as well as reduced Ikaros and CK2 but not PP1 expression, were observed in a transgenic, triple mutant (TrM) pancreatic cancer model. Ikaros expression was also reduced in enriched TB CD3+ T cells. MG132 treatment of naïve CD3+ T cells stabilized Ikaros expression in the presence of Panc02 cells. Western blots showed reduced PP1 and CK2 expression in TB CD3+ T cells. Conclusions/Significance The results of this study suggest that the pancreatic tumor microenvironment may cause proteasomal degradation of Ikaros, possibly via dysregulation of PP1 and CK2 expression and activity, respectively. This loss of Ikaros expression may contribute to an imbalance in T cell percentages. Ikaros may potentially be a therapeutic target to restore T cell homeostasis in pancreatic cancer hosts, which may be critical for effective anti-tumor immunity

    Identification of a PA-Binding Peptide with Inhibitory Activity against Influenza A and B Virus Replication

    Get PDF
    There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds

    Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths

    Get PDF
    Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-Îł. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency

    Novel inhibitors of the calcineurin/NFATc hub - alternatives to CsA and FK506?

    Get PDF
    The drugs cyclosporine A (CsA) and tacrolimus (FK506) revolutionized organ transplantation. Both compounds are still widely used in the clinic as well as for basic research, even though they have dramatic side effects and modulate other pathways than calcineurin-NFATc, too. To answer the major open question - whether the adverse side effects are secondary to the actions of the drugs on the calcineurin-NFATc pathway - alternative inhibitors were developed. Ideal inhibitors should discriminate between the inhibition of (i) calcineurin and peptidyl-prolyl cis-trans isomerases (PPIases; the matchmaker proteins of CsA and FK506), (ii) calcineurin and the other Ser/Thr protein phosphatases, and (iii) NFATc and other transcription factors. In this review we summarize the current knowledge about novel inhibitors, synthesized or identified in the last decades, and focus on their mode of action, specificity, and biological effects

    Transcriptional and Epigenetic Substrates of Methamphetamine Addiction and Withdrawal: Evidence from a Long-Access Self-Administration Model in the Rat

    Get PDF
    • …
    corecore