16 research outputs found

    Cold atmospheric plasma induces apoptosis in human colon and lung cancer cells through modulating mitochondrial pathway

    Get PDF
    Cold atmospheric plasma (CAP) is an emerging and promising oncotherapy with considerable potential and advantages that traditional treatment modalities lack. The objective of this study was to investigate the effect and mechanism of plasma-inhibited proliferation and plasma-induced apoptosis on human lung cancer and colon cancer cells in vitro and in vivo. Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. Firstly, CAPPZ2 treatment inhibited the proliferation of HT29 colorectal cancer cells and A549 lung cancer cells using CCK8 assay, caused morphological changes at the cellular and subcellular levels using transmission electron microscopy, and suppressed both types of tumor cell migration and invasion using the Transwell migration and Matrigel invasion assay. Secondly, we confirmed plasma-induced apoptosis in the HT29 and A549 cells using the AO/EB staining coupled with flow cytometry, and verified the production of apoptosis-related proteins, such as cytochrome c, PARP, cleaved caspase-3 and caspase-9, Bcl-2 and Bax, using western blotting. Finally, the aforementioned in vitro results were tested in vivo using cell-derived xenograft mouse models, and the anticancer effect was confirmed and attributed to CAP-mediated apoptosis. The immunohistochemical analysis revealed that the expression of cleaved caspase-9, caspase-3, PARP and Bax were upregulated whereas that of Bcl-2 downregulated after CAP treatment. These findings collectively suggest that the activation of the mitochondrial pathway is involved during CAPPZ2-induced apoptosis of human colon and lung cancer cells in vitro and in vivo

    Layer-dependent correlated phases in WSe₂/MoS₂ moiré superlattice

    No full text
    Electron correlation plays an essential role in the macroscopic quantum phenomena in the moiré heterostructure, such as antiferromagnetism and correlated insulating phases. Unlike the phenomena where the interaction involves only electrons in one layer, the interaction of distinct phases in two or more layers represents a new horizon forward, such as the one in the Kondo lattice model. Here, using interlayer excitons as a probe, we show that the interlayer interactions in heterobilayers of tungsten diselenide and molybdenum disulfide (WSe2/MoS2) can be electrically switched on and off, resulting in a layer-dependent correlated phase diagram, including single-layer, layer-selective, excitonic-insulator and layer-hybridized regions. We demonstrate that these correlated phases affect the interlayer exciton non-radiative decay pathways. These results reveal the role of strong correlation on interlayer exciton dynamics and pave the way for studying the layer-resolved strong correlation behaviour in moiré heterostructures.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)National Research Foundation (NRF)This work is supported by the Singapore National Research Foundation and A*STAR through their Competitive Research Program (award no. NRF-CRP22-2019-0004, award no. NRF-CRP23-2019-0002 and the Quantum Engineering Programme) and by the Singapore Ministry of Education (MOE2016-T3-1-006 (S))

    Associations of Serological Biomarkers of sICAM-1, IL-1β, MIF, and su-PAR with 3-Month Mortality in Acute Exacerbation of Idiopathic Pulmonary Fibrosis

    No full text
    Objective. To investigate prognostic values of serum biomarkers of soluble intercellular adhesion molecule 1 (sICAM-1), macrophage migration inhibitor factor (MIF), interleukin 1β (IL-1β), and soluble urokinase plasminogen activator receptor (su-PAR) in patients with acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF). Methods. From August 2017 to November 2019, 122 consecutive IPF patients treated in our center were classified as stable IPF and AE-IPF based on the newly published international guidelines. Serum levels of four biomarkers at admission were measured by the enzyme-linked immunosorbent assay (ELISA). The primary endpoint was 3-month mortality. The log-rank test and logistic regression analysis were used to evaluate the effects of these biomarkers for survival in patients with AE-IPF. Cox proportional hazards analysis was performed to evaluate the prognostic values of serological biomarkers and clinical data. Results. Eighty-one patients were diagnosed with stable IPF, and 41 AE-IPF patients were enrolled in the study. Serum levels of sICAM-1 (p5 pg/mL, p=0.033) were independent risk factors for 3-month mortality in patients with AE-IPF. Conclusions. We showed the higher serum levels of IL-1β, and MIF had prognostic values for 3-month mortality in AE-IPF. This study provided a clue to promote our understanding in the pathogenesis of the disease
    corecore